timeline
library(timevis)
library(tidyverse)
# load lab timeline csv data
timelines <- read.csv(file.choose())
timelines <- arrange(timelines, start)
head(timelines,3)
# create grouping lookup table
labgroups <- data.frame(
  id = c("pi", "admin", "tech", "postdoc", "phd", "building"),
  content = c("PI", "Admin", "Technician", "Postdoc", "PhD", "Building") 
)
# timelines <- select(timelines, content:group)
#visualise (blue= current members)
chart <- timevis(timelines, groups = labgroups)
LS0tCnRpdGxlOiAidGltZWxpbmUiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KICAKYGBge3J9CmxpYnJhcnkodGltZXZpcykKbGlicmFyeSh0aWR5dmVyc2UpCgojIGxvYWQgbGFiIHRpbWVsaW5lIGNzdiBkYXRhCnRpbWVsaW5lcyA8LSByZWFkLmNzdihmaWxlLmNob29zZSgpKQp0aW1lbGluZXMgPC0gYXJyYW5nZSh0aW1lbGluZXMsIHN0YXJ0KQpoZWFkKHRpbWVsaW5lcywzKQpgYGAKCmBgYHtyfQojIGNyZWF0ZSBncm91cGluZyBsb29rdXAgdGFibGUKbGFiZ3JvdXBzIDwtIGRhdGEuZnJhbWUoCiAgaWQgPSBjKCJwaSIsICJhZG1pbiIsICJ0ZWNoIiwgInBvc3Rkb2MiLCAicGhkIiwgImJ1aWxkaW5nIiksCiAgY29udGVudCA9IGMoIlBJIiwgIkFkbWluIiwgIlRlY2huaWNpYW4iLCAiUG9zdGRvYyIsICJQaEQiLCAiQnVpbGRpbmciKSAKKQoKIyB0aW1lbGluZXMgPC0gc2VsZWN0KHRpbWVsaW5lcywgY29udGVudDpncm91cCkKYGBgCgpgYGB7cn0KI3Zpc3VhbGlzZSAoYmx1ZT0gY3VycmVudCBtZW1iZXJzKQpjaGFydCA8LSB0aW1ldmlzKHRpbWVsaW5lcywgZ3JvdXBzID0gbGFiZ3JvdXBzKQpgYGAK

This page was made using R markdown (because some of us are data science nerds)