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Since the discovery of chromosome territories, it has been clear

that DNA within the nucleus is spatially organized. During the

last decade, a tremendous body of work has described

architectural features of chromatin at different spatial scales,

such as A/B compartments, topologically associating domains

(TADs), and chromatin loops. These features correlate with

domains of chromatin marking and gene expression,

supporting their relevance for gene regulation. Recent work has

highlighted the dynamic nature of spatial folding and

investigated mechanisms of their formation. Here we discuss

current understanding and highlight key open questions in

chromosome organization in animals.
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Introduction
The current view of nuclear organization has come pre-

dominantly from applying variations of two major types of

method, (i) microscopic observations or (ii) assessment of

chromatin interactions using Chromosome Conformation

Capture (3C) techniques (see [1] for a concise review of

these methods). Using microscopy to visualise fluorescent

probes targeted to specific loci can reveal the spatial

location of whole chromosomes and the relative positions

of loci with respect to each other or to landmarks such as

the nuclear envelope or nucleoli. On the other hand, 3C

methods detect interactions between two regions of chro-

matin [2]. In these methods, the physical proximity of two

regions of DNA within the nucleus is inferred from the

frequency of ligation events generated between them

following nuclear fixation and digestion. Although cap-

tured ligation events are referred to as ‘chromatin inter-

actions,’ in reality they represent regions of DNA that
www.sciencedirect.com 
were close enough to be ligated together, which could be

because of a direct interaction between these regions or

because the regions occupied the same general vicinity.

Applying the 3C technique genome-wide (Hi-C), chro-

matin interactions can be mapped across the genome [3],

with resolution related to the depth of sequencing [3,4].

Importantly, 3C methods and microscopy are highly

complementary. 3C methods identify putative chromatin

interactions usually from cell populations and cannot

assess the frequency of occurrence of the identified

interactions across the population. On the other hand,

microscopy can be used to validate interactions and their

frequency, by visualising large numbers of individual

nuclei. Live imaging is also powerful to investigate the

stability of interactions and the dynamics of the associa-

tion of proteins with chromatin.

Applying these methods has led to the definition of

different types of chromatin organization, such as chro-

mosome territories, compartments, TADs, insulated

domains, contact domains, and loops. Here we discuss

their properties and potential relationships.

Large-scale organization: chromosome
territories and compartments
The initial visualization of the spatial positioning of

chromosomes by microscopy demonstrated that their

organization is actively regulated within the nucleus.

Individual chromosomes are spatially organized in

interphase nuclei, occupying distinct chromosome ter-

ritories (CTs), and adopting relatively reproducible

positions in different cells with limited intermingling

(Figure 1a). Additionally, inactive regions of chromatin

are often found in proximity to the nuclear envelope

whereas active chromatin generally has a more internal

position within the nucleus [5].

More recently, 3C-based procedures have been instru-

mental in assessing 3D structure of individual chromo-

somes at increasingly higher resolution. Using Hi-C to

derive average chromosome conformations from captur-

ing pair-wise interactions in populations of cells revealed

that chromosomes have two major types of structural

domains, termed A and B compartments [3]. The A

compartment contains active chromatin (denoted by tran-

scriptional activity, higher chromatin accessibility and

H3K36me3 deposition) while the B compartment, more

compacted, is associated with inactive chromatin

(denoted by low transcriptional activity, association with

the nuclear lamina and H3K27me3 deposition) [3,4].
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Importantly, the plaid pattern obtained by plotting pair-

wise correlation scores of interaction landscapes, when

observed across entire chromosomes (Figure 1b), reveals

that chromatin interactions are more frequent between

regions of the same compartment type (A with A, and B

with B) [3]. A recent Hi-C study conducted on single

mammalian cells provided striking views of the spatial

arrangements of A and B compartments [6��]. In model-

ling the arrangement of all chromosomes within the

nucleus, it was shown that DNA from the A compartment

is organized in an inner ring-shaped structure, while DNA

from the B compartment preferentially associates with

the lamina and the edges of nucleoli (Figure 1a). These

results are consistent with previous studies that used

microscopy to map the locations of active and inactive

chromatin within nuclei [5,7].

A single-cell Hi-C study also highlighted the stochastic

positions of A and B compartments in interphase cells

[6��]. Although a locus on a given chromosome occupies

the same compartment in different nuclei, the spatial

folding of the chromosome varies between nuclei

(Figure 1a). This is in agreement with the finding that

positions of lamina-associated chromatin (largely corre-

sponding to the B compartment) are not heritable.

Instead, these regions are randomly redirected to the

nuclear lamina or near nucleoli after mitosis, with some of

them switching from a nuclear lamina position to a

nucleolar associated location [8]. These studies show

that chromosomes have different conformations in dif-

ferent cells and that A compartment active chromatin and

B compartment inactive chromatin are spatially segre-

gated both within chromosomes and globally within

nuclei.

Importantly, A/B compartment organization is only

observed in interphase. During mitosis, chromatin struc-

ture is radically rearranged (Figure 1c) [5,9,10]. Hi-C

studies performed on synchronised cells showed that

minutes after entering prophase, chromosomes lose A/B

compartment organization and progressively generate

and compact arrays of loops arranged around helical

scaffolds of condensin I and II complexes. This raises

the question of how compartment structure is reformed.

Although a relationship between transcriptional activity

and compartments is clear, the mechanism of compart-

ment formation and function are not yet understood. A

striking feature of A and B compartments is their differ-

ent chromatin composition, including histone modifica-

tions associated with gene activity or inactivity, respec-

tively. Chromatin state domains, which are defined by

differently marked chromatin, have been noted to sub-

divide the genomes of animals, and their position in the

genome is relatively constant during development [11].

Interestingly, super-resolution  imaging has shown that

different chromatin state domains (e.g., active, inactive,
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Polycomb marked) have distinct types of 3D organiza-

tion, with Polycomb-marked chromatin having the dens-

est packing [12,13�]. Furthermore, altering local chroma-

tin composition through targeting histone modifiers can

drive repositioning to different compartments [14].

Whereas histone modifications can be inherited through

cell division, most compartment interactions are lost

during mitosis but regained after division [9,15]

(Figure 1c). These data suggest a model where the

formation and structure of chromosome compartments

relies on chromatin domains [16��,17,18��]. In such a

model, chromatin reorganization that occurs during mito-

sis would prevent A/B compartment interactions, while

retention of chromatin domain marking would provide a

framework for regenerating compartments in daughter

cells (Figure 1c).

What might cause the segregation of chromatin into two

types of spatial compartment? A growing body of work has

shown that liquid–liquid phase separation can drive the

formation of non-membrane bound compartments in the

nucleus and cytoplasm [19]. For instance, the nucleolus is

a phase separated compartment containing several differ-

ent immiscible liquid-like sub-compartments, and HP1

containing heterochromatin has liquid-like properties and

appears to form by phase separation [20–23]. The forma-

tion of these membrane-less compartments is thought to

be driven by the local condensation of proteins containing

unstructured regions. It is plausible that domains of

particular chromatin modifications and/or proteins could

drive phase-separated compartments that organize chro-

mosome structure.

Intermediate scale organization: topologically
associating domains
At a more local scale, chromatin interaction studies mostly

in Drosophila and mammalian cells have described the

segmentation of the genome into small physical domains

of tens of kilobases up to a few megabases, and generally

containing a small number (e.g., 1–10) of genes [4,24–28].

These self-interacting domains are variously termed

‘Topologically Associating Domains’ (TADs) [24–26],

sub-TADs [27], ‘contact domains’ [4] and ‘insulated

neighbourhoods’ [28]. They are defined based on observ-

ing frequent chromatin interactions within a region and

relatively fewer interactions with neighbouring chroma-

tin. Because these differently named domains are defined

in a similar way, and it is unknown whether they are

functionally different, we will refer to this class of chro-

mosome segmentation domain as ‘topologically associat-

ing domains’ (TADs) without distinction. The properties

of TADs support the view that they represent functional

domains. For example, histone modification and replica-

tion timing are often similar across individual TADs

[4,29]. Additionally, TADs appear to constrain the regu-

latory activity of enhancers [30].
www.sciencedirect.com
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Figure 1
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Large-scale chromosome organization. (a) Computational model of the 3D structure of a haploid mouse ES genome using data from a single-cell Hi-

C experiment. Left: Modelled arrangement of the chromosomes within a single nucleus. Each chromosome is coloured differently. Center: Cross-

section of the modelled nucleus, with A compartment in blue and B compartment in red. The B compartment is enriched at the nuclear lamina and

in a central ring that surrounds the nucleolus. Right: Different structural organization of chromosome 9 modelled from two different single-cell Hi-C

datasets. Figures extracted from [6��]. (b) Pearson correlation map of chromatin interactions on Chromosome 17 at a resolution of 500 kb. The

eigenvector obtained by principal component analysis (PCA) reveals segregation of the chromosome in two compartments, A (positive values) and B

(negative values). Data visualised using Juicebox and obtained from [4]. (c) A/B compartments are present in interphase, lost in mitosis and re-

established after cell division. A/B compartment re-establishment could potentially rely on retained chromatin domains defined by histone

modifications. The Pearson correlation maps of interactions are coloured as in (b). Data obtained from [9] and visualised using Juicebox [4].
TAD boundaries
The positions of TAD boundaries defined from studies

on populations of cells appear relatively conserved in

different cell types and across evolution [27,28,31–34].

In mammals, TAD boundaries interact more frequently

with each other than with any other locus within the TAD

and usually show binding of the CCCTC binding factor

CTCF and the cohesin complex [4,24,25]. CTCF was

initially identified as a protein with insulator activity, and

its binding motifs at interacting boundaries are almost

always oppositely oriented [4,34,35]. These observations

have led to the notion that a chromosome domain is

constrained within an insulating loop anchored by oppo-

sitely oriented CTCF proteins at the two boundaries of

the domain (Figure 2). This model is supported by the
www.sciencedirect.com 
analyses of mutants with deletions or inversions of CTCF

sites at TAD boundaries, which led to predicted fusions

or alterations of TADs [36,37].

The importance of TAD domain organization is also

supported by gene expression and phenotypic alterations

that are associated with TAD perturbations. In late

embryonic development in the mouse, deleting a bound-

ary between TADs that separate Hox genes alters gene

expression and leads to skeletal defects [38]. In human

and mouse, the inversion, deletion or duplication of

TADs or TAD boundaries was shown to alter expression

of genes located in the affected TADs, resulting in heart

or limb pathologies [39,40], Cook syndrome [41�] or

cancer susceptibility [42].
Current Opinion in Cell Biology 2018, 52:145–153
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Figure 2
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Topologically associating domain (TAD) organization in mammals. Three theoretical TADs (green, red and blue) are depicted. 4C tracks from [39]

are used to illustrate the ‘insulating’ properties of TAD boundaries (4C experiments assess the interactions between one specific locus and the

rest of the genome; the assessed locus in each 4C experiment is indicated by an arrowhead). Insulating loops between TAD boundaries are

represented by dashed lines while contacts between regulatory elements are represented by solid yellow lines.
Mechanism and dynamics of domain
formation
The cohesin complex forms a ring structure that entraps

DNA for sister chromatid cohesion in meiosis and mitosis

[43]. The enrichment of cohesin at TAD boundaries in

interphase cells, together with its ability to entrap DNA,

has led to a ‘loop extrusion’ model to describe the

formation of insulating loops [44,45�] (Figure 3). In this

model, a loop of DNA is dynamically extruded by a loop

extrusion factor (LEF) that contains cohesin (Figure 3b–

f). Encountering a ‘boundary factor’ (BF) such as CTCF

would stabilize the complex (Figure 3e–i). This model

would explain the enrichment of cohesin and CTCF at

TAD boundaries and the strong interaction signal

observed between these regions. Of note, consistent with

these roles, cohesin binding is located on the inner edge

of the TAD relative to CTCF (Figure 3e) [46].

Increasing experimental and modelling studies have

given strong support to the involvement of cohesin and

loop extrusion in regulating chromosome organization

(see [47] for a recent review). However, their mechanisms

are still unclear. For example, the factors or processes

providing the force for loop extrusion are not yet known.

Transcriptional activity is correlated with TADs, and a

recent computational model suggests that the negative

supercoiling generated by transcription could provide

energy for loop extrusion by ‘pushing’ cohesin handcuffs

[22,45�,48]. However, TADs may not rely on transcrip-

tion, as they start forming in Drosophila embryogenesis

before the onset of the majority of zygotic transcription,
Current Opinion in Cell Biology 2018, 52:145–153 
and still form even after chemical inhibition of RNA

polymerase [49,50].

The dynamics of cohesin and CTCF binding to chroma-

tin argue that loops are not static structures but instead are

constantly forming and collapsing (Figure 3d–f). Cohesin

has a residence time of �22 min, and CTCF, potentially

playing the role of an insulating loop anchor, has a

residence time of �1 min [51��]. This implies that cohe-

sin/CTCF loops are present only transiently even when

ends are at TAD boundaries (Figure 3). The binding

dynamics also explains how an extruding loop could

bypass a TAD boundary to form a larger loop. Finally,

dynamic binding suggests that nested extrusion would be

expected to form within existing loops. A dynamic nature

of chromosome domains is also supported by single-cell

Hi-C studies [6��,52,53�]. Although averaged TAD

boundary positions converge to those defined using a

large number of cells, individual cells differ in TAD

positions, and TADs can transgress conserved TAD

boundaries. These studies support the view of dynamic

loop formation and collapse and indicate that TADs are

not stable structures (Figure 3).

Factors involved in the formation of domains
and boundaries
A series of recent studies directly investigated the roles of

cohesin and CTCF in interphase chromosome organiza-

tion by removing them in mammalian cells [16��,54��].
Loss of CTCF, the Rad21 component of cohesin, or the

cohesin loading factor Nipbl, led to the loss of TADs and
www.sciencedirect.com
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Figure 3
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Model of dynamic loop extrusion. A loop extrusion factor (LEF) binds to a segment of chromatin between two boundary factors (BF) located on

TAD boundaries and initiates loop extrusion (a). Although this loop is growing, a new LEF could bind within the loop (b), leading to the extrusion of

a secondary nested loop (c). If BFs are present when the loop ends reach a TAD boundary, the loop is temporarily stabilized (d) then disrupts

when a LEF or LEF/BF complex dissociates (e). Alternatively, if a BF is not present, the loop could bypass the TAD boundary (f). Loops could

potentially also dissociate during any phase of extrusion. Model based on Refs. [44,45�].
loops [16��,54��,55], underlining the important structural

role of both CTCF and cohesin in forming loops and

insulated domains. In line with these results, the cohesin

release factor WAPL was shown to restrict loop extension,

as evidenced by the increase in loop size upon its deple-

tion [56��]. However, although loops and TAD structure

were lost upon CTCF or cohesin removal, A/B compart-

ment structure remained intact, indicating that TADs and

compartments are two independent types of structure
www.sciencedirect.com 
[16��,54��,55]. CTCF or cohesin loss did not cause wide-

spread transcriptional changes but only affected the

expression of a limited set of genes, suggesting that much

of normal gene expression is not dependent on TAD

structure. It may be that compartments, which are

retained, are important in this context.

The regulation of nucleosome dynamics at TAD bound-

aries also has the potential to control boundary ‘strength’
Current Opinion in Cell Biology 2018, 52:145–153
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(i.e. the level of segregation of interactions on each side of

the boundary). TAD boundaries are sensitive to DNAse I

digestion which indicates a lower nucleosome density

[57,58]. Moreover, loss of the nucleosome remodelling

protein BRG1 increases nucleosome occupancy at TAD

boundaries and reduces boundary strength and CTCF

binding [59]. In addition to affecting the binding of

boundary factors, nucleosome dynamics has the potential

to affect boundary function through changing local chro-

matin flexibility (see [60] for further discussion).

Importantly, factors involved in domain formation appear

to differ in different animals. Mammals show strong

CTCF/cohesin loop anchors at TAD boundaries [4,27]

whereas in Drosophila, CTCF sites are at a small propor-

tion of TAD boundaries and are not usually in inverted

orientation [18��]. Instead, Drosophila TAD boundaries

are enriched for a number of other architectural proteins,

such as CP190 and BEAF [57,58]. Furthermore, recent

studies indicate that the prevalent strong loop anchors

observed in mammals do not exist in Drosophila and that

many TAD ‘boundaries’ are instead domains of active

genes [18��,57,61�].

Domains in other organisms
The widespread TAD structure described in mammals

and Drosophila has not been observed in other organisms

such as Caenorhabditis elegans [62] and Arabidopsis thaliana
[63]. However, this difference may be due to technical

and/or biological limitations, such as Hi-C map resolution

and gene spacing. Notably, TAD-like structures are visi-

ble in gene-depleted regions of these otherwise compact

genomes [18��]. Although TADs are not apparent in C.
elegans, a larger domain structure required for dosage

compensation has been observed on the X chromosome

[62]. Additionally, C. elegans autosomes are demarcated by

alternating chromatin domains of H3K27me3 and

H3K36me3 which contain genes with different modes

of regulation [11,15]. Although the relationship between

this chromatin domain pattern and spatial organization is

not yet known, a similar chromatin domain organization of

high versus low levels of H3K27me3 occurs in Drosophila

sperm, and this pattern aligns well with TADs and TAD

boundaries, respectively [17,61�]. The alignment of his-

tone modification domains with TADs together with the

finding that compartments and histone modification pat-

terns are not generally affected by loss of cohesin or

CTCF in mammals suggests that chromatin domains

may provide a primary level of 1D chromatin organization

and regulation upon which higher-level organizational

mechanisms act.

Small-scale chromatin interactions
Variant 3C methods such as 4C, 5C, ChIA-PET or pro-

moter capture, focusing on selected regions of the gen-

omes, have uncovered extensive contacts between regu-

latory elements (i.e. promoters and enhancers), especially
Current Opinion in Cell Biology 2018, 52:145–153 
within TADs, which are not generally visible using

genome wide methods such as Hi-C [64–67]. Enhancers

usually contact multiple promoters and vice versa (Fig-

ure 2), and interacting regions show correlated activity,

suggesting that contacts have functions in transcriptional

control. Some genomic regions, such as Frequently Inter-

acting REgions (FIREs) show particularly dense local

interactions [31,68] and are associated with networks of

co-expressed tissue-specific genes clustered within the

same domain [68]. Their function is not yet known, but

they might serve as a platform for transcription regulation

in a domain. The anchors of enhancer/promoter interac-

tions are less enriched for the combination of CTCF and

cohesin compared to loop anchors at insulating TAD

boundaries suggesting alternative mechanisms for their

formation [4,27,31,40]. This observation could explain

the relatively weak effect of CTCF and cohesin depletion

on gene regulation [16��,54��].

There is evidence that both pre-established loops and de
novo loop formation play roles in regulating transcrip-

tional output. In Drosophila and mammals, interactions

between enhancers and promoters are detected before

gene activation and are associated with paused RNA

polymerase, suggesting that such contacts prime later

expression [31,64,69]. Similarly, during early neural line-

age commitment, enrichment of transcription factor YY1

at a set of pre-established regulatory loops is associated

with transcription activation [33]. During macrophage

development, transcription activation is associated with

both the formation of new regulatory loops and increased

acetylation of H3K27 at pre-existing loop anchors [31].

Finally, directly inducing contact between an enhancer

and a promoter can drive transcription, supporting the

functionality of interactions [70,71].

In summary, the current data support roles for chromatin

interactions in regulating gene expression and controlling

chromosome organization. Yet the mechanisms that gov-

ern patterns of regulatory element interactions are still

poorly understood.

Conclusion
In this review, we have highlighted the diverse and

versatile mechanisms implemented within the nucleus

to build spatially organized and regulated chromatin.

Although recent work has provided a remarkable

improvement in our understanding of genome organiza-

tion, many outstanding questions remain, such as (1) How

are higher-order structures such as A/B compartments

formed? Do liquid–liquid phase transitions play a role?

(2) How are TADs formed? What provides the force for

loop extrusion? (3) How are contacts between regulatory

elements made and what are their functions? What are the

roles of transcription factors? (4) How many different

types of loop exist, and what are their functions?
www.sciencedirect.com
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The increasing use of perturbation analyses, studies of

protein and regulatory dynamics, and investigations at

higher resolution will help to address these and other

fundamental questions. The field is at an exciting stage

where new studies and technologies should lead to break-

throughs in our understanding of genome regulation and

organization.
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