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Abstract

The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males
and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X
chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The
mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the
methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X
chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20
ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively,
and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi
knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene
expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress
transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that
increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin
compaction.
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Introduction

In many animals, males and females have a different number of

X chromosomes. Dosage compensation is a chromosome-wide

process of gene regulation that equalizes gene expression between

the sexes despite the difference in X-linked gene dosage, and is

achieved by a variety of mechanisms [1,2]. In humans, one X

chromosome is inactivated in females. In Drosophila, expression

from the single X chromosome in males is upregulated two-fold to

match expression from the two X chromosomes in females. In C.

elegans, the two X chromosomes in hermaphrodites are downreg-

ulated two-fold to match expression from the single X chromo-

some in males. In each of these cases, regulation of gene expression

involves the targeting of specialized protein complexes specifically

to the X chromosome. Studies of different dosage compensation

mechanisms have uncovered chromatin-mediated mechanisms of

gene regulation.

In C. elegans, dosage compensation is achieved by the dosage

compensation complex (DCC) (reviewed in [3]). The core of the

DCC consists of a five-subunit condensin complex named

condensin IDC. Condensin complexes mediate chromosome

condensation and resolution in mitosis and meiosis, and partici-

pate in crossover control during meiosis [4]. Four subunits (MIX-

1, DPY-26, DPY-28, and CAPG-1) are shared with canonical

condensin I, while DPY-27 is specific to condensin IDC [5]. The

central role of a condensin-like complex in dosage compensation

suggests that the mechanism of dosage compensation involves

regulation of chromatin structure. Five other components of the

DCC (SDC-1, SDC-2, SDC-3, DPY-21 and DPY-30) physically

interact with different subunits of condensin IDC, and all examined

components of the DCC are enriched on hermaphrodite X

chromosomes relative to autosomes [3].

The DCC is targeted to the X chromosome through specific

sequence elements, called rex (recruitment elements on X) sites

(reviewed in [3]). After recruitment, the DCC spreads to dox

(dependent on X) sites, which consist mostly of active promoters.

The zinc finger protein SDC-2 is the primary X-chromosome

recruitment factor for the DCC. The DCC also binds to some
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autosomal sites at lower levels, but the functional significance of

autosomal binding is not yet known [6,7]. SDC-3 requires SDC-2

for X-chromosome binding, and all of the other DCC components

require SDC-2 and SDC-3 for recruitment. Loss of DCC proteins

impairs dosage compensation, resulting in upregulation of X-

linked genes and death of XX animals. DPY-21 and SDC-1 null

mutants have milder dosage compensation defects and are viable,

with apparently normal DCC protein localization on X

[8,9,10,11,12].

A current model is that SDC proteins recruit condensin IDC to

the X chromosome, leading to changes in chromatin structure that

result in reduction of gene expression. In XX animals, not all

genes on X are dosage compensated, and DCC association with

genes correlates with gene expression level but not with the degree

of repression [7]. The mechanism of repression is not understood,

but DCC mutants have increased levels of RNA polymerase II on

X-linked genes, indicating regulation at the level of transcription

[13].

Here we show that the DCC is required for enrichment of the

histone modification H4K20me1 on the X chromosomes of

hermaphrodites and that the responsible histone methyltransferase

SET-1 is important for downregulation of dosage-compensated

genes. Our study implicates the histone modification H4K20me1

in the process of dosage compensation.

Results

The localization of dosage compensation proteins to the X

chromosome become apparent at around the 30-cell stage of

embryogenesis [3,14]. Our previous experiments mapping the

genome-wide patterns of H4K20me1 suggested that this histone

modification might function in dosage compensation: H4K20me1

is weakly enriched on the X chromosome in early embryo

populations that span initiation of dosage compensation (1–300-

cell stages with 76%,100-cell) and strong enrichment at the third

larval (L3) stage, when dosage compensation is fully active

(Figure 1A) [15]. We performed additional ChIP experiments to

better define the timing of H4K20me1 enrichment on X. We

found that late embryos (99% 100-cell to 3-fold stage), which have

activated dosage compensation, display high H4K20me1 on the

X, similar to the pattern in L3 larvae (Figure 1A). Moreover,

enrichment on the X chromosome is maintained in adult

hermaphrodites (Figure 1A). Therefore, H4K20me1 is enriched

on the X chromosome at developmental stages when dosage

compensation is active.

H4K20me1 is enriched in both coding and non-coding
regions along the X chromosome in dosage-
compensating XX hermaphrodites

In C. elegans, dosage compensation downregulates genes on the

X chromosome. We therefore examined the pattern of

H4K20me1 with respect to gene features. As seen previously in

early embryos and L3 larvae [15], H4K20me1 is enriched across

active gene regions at all developmental stages examined, with

high enrichment on X-linked genes and lower enrichment on

autosomal genes (Figure 1C). H4K20me1 levels are positively

correlated with transcript levels for both X-linked and autosomal

genes (rs = 0.66 and rs = 0.56, respectively). Notably, inactive X-

linked genes have higher levels of H4K20me1 than active

autosomal genes (Figure 1C). On autosomes H4K20me1 is

primarily confined to transcribed regions, while on the X,

H4K20me1 is elevated across the chromosome, including regions

that are more than 5 kb from any annotated gene feature

(Figure 1D). This widespread distribution of H4K20me1 on the X

chromosome suggests a role in chromosome-wide regulation of

gene expression.

H4K20me1 is enriched on the X after the onset of dosage
compensation

Our ChIP experiments from early and late stage embryos, L3s,

and young adults showed that the timing of H4K20me1

enrichment on the X chromosome is consistent with a role in

dosage compensation. To determine more precisely when

H4K20me1 becomes enriched on the X chromosome, we

performed immunofluorescence experiments using two different

antibodies specific for H4K20me1. In embryos prior to the 30-cell

stage, neither DPY-27 nor H4K20me1 was concentrated in any

subnuclear region (Figure 2A). However, we observed that nuclear

staining of H4K20me1 increased dramatically during mitosis

(Figure 2A and Figure S1). This is consistent with reports showing

that in other organisms, H4K20me1 is present at high levels in

mitosis and has a role in chromosome condensation [16]. At

around the 30-cell stage, DPY-27 became localized to subregions

of each nucleus that have been shown to be the X chromosomes

[14] (Figure 2B, 2F). At this time, H4K20me1 was still distributed

uniformly in the nucleus (Figure 2B, 2F). In embryos beginning the

differentiation stage, H4K20me1 staining began to concentrate on

the X chromosomes, as evidenced by colocalization with DPY-27,

and this pattern became widespread in somatic cells throughout

hermaphrodite development (Figure 2D, 2E, 2G; Figure S2A).

Therefore, localization of the DCC to the X chromosome

precedes enrichment of H4K20me1.

H4K20me1 is reduced on the X in the germ line during
meiotic silencing

In the germ line, the DCC does not localize to the X

chromosome [10]. The X chromosome is largely silent, and the

silent state is mediated by a mechanism independent from somatic

dosage compensation [10,17,18,19]. We observed a distinct and

dynamic pattern of H4K20me1 staining in the adult germ line.

H4K20me1 levels were highest in the distal mitotic region, and

Author Summary

In many animals, males have one X chromosome and
females have two. However, the same amount of gene
expression from X chromosomes is needed in the two
sexes. The process of dosage compensation (DC) globally
regulates X-chromosome gene expression to make it equal
between the sexes, and it occurs in different ways in
different animals. In mammals, one X chromosome in
females is randomly inactivated, leaving one active X
chromosome. In contrast, in the nematode worm C.
elegans, the two X chromosomes in hermaphrodites are
repressed two-fold to match gene expression to the single
X chromosome in males. Previous work in C. elegans
identified proteins required for DC that bind to the X
chromosome, but their mode of action is not known. Here
we show that DC proteins lead to higher levels of histone
H4 lysine 20 monomethylation (H4K20me1) on hermaph-
rodite X chromosomes and that H4K20me1 functions in
repressing X-chromosome gene expression. This shows
that histone modification is an important aspect of the
mechanism of dosage compensation. Together with
previous work linking H4K20me1 to chromatin structure
regulation, our results suggest that dosage compensation
might lower gene expression on hermaphrodite X chro-
mosomes by compacting them.

H4K20me1 and Dosage Compensation
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decreased as nuclei entered meiosis (Figure S3A). Early meiotic

nuclei entering the transition zone showed similar H4K20me1

levels on X and autosomes (Figure S3B). As nuclei progressed

through the transition zone into early pachytene, H4K20me1

levels were much lower on the X chromosome than on autosomes

(Figure S3B). The X chromosome is silent during early and mid-

Figure 1. H4K20me1 becomes enriched on the X chromosome in wild type but not in a mutant defective in dosage compensation.
(A) Genome browser tracks of indicated ChIP signals across representative regions of chromosome I and chromosome X in wild-type early embryos
(EE), late embryos (LE), L3 larvae (L3), and fem-2 female young adults (YA). For each track, the average of two independent biological replicates is
shown as z-scores (standardized log2 ratios of ChIP/Input signals). High H4K20me1 enrichment on X begins in late embryos. A track of DPY-27 (a DCC
component) is shown for reference. (B) Enrichment of H4K20me1 on the X is lost in dpy-21 mutants. (C) Plots of H4K20me1 and H4K20me3 signal
across the TSS (transcript start site) and TES (transcript end site) of genes on X (red) and autosomes (blue). Genes in the top 20% of expression (dark
shades) and bottom 20% (light shades) are plotted separately. (D) Plots of H4K20me1 and H4K20me3 signal centered at intergenic regions at least
5 kb from any annotated feature. (E) Box plots of overall H4K20me1 and H4K20me3 signals on each chromosome. Each box shows the median and
extends from the 25th to the 75th percentile of the z-scores in the set; whiskers extending from the box indicate the 2.5th and 97.5th percentiles.
doi:10.1371/journal.pgen.1002933.g001

H4K20me1 and Dosage Compensation
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pachytene [18]. Later in meiotic prophase, H4K20me1 levels

increased on the X, coincident with activation of X-linked gene

expression (Figure S3B; [18]). In contrast to the enrichment of

H4K20me1 on the X chromosome in somatic nuclei, levels of

H4K20me1 in late meiotic prophase were similar on the X

chromosome and autosomes (Figure S3B). To summarize,

H4K20me1 shows a dynamic localization pattern on germline

chromatin, with two characteristics of localization shared with

somatic chromatin. First, enrichment of H4K20me1 is observed

on mitotic chromosomes. Second, in meiotic nuclei, H4K20me1 is

associated with chromatin that has active gene expression.

H4K20me1 enrichment on the X depends on DCC
function

To test whether H4K20me1 enrichment on the X chromosome

depends on the DCC, we carried out H4K20me1 ChIP-chip

experiments using extracts from dpy-21 mutant L3 larvae, which

Figure 2. H4K20me1 becomes concentrated on the X chromosome after the DCC. Wild-type embryos at (A) 20-cell, (B) 40-cell, (C) bean, (D)
comma, and (E) three-fold stages stained for DNA (DAPI, blue, left column), DPY-27 (red, second column), and H4K20me1 (green, third column).
Boxed regions in B and E are enlarged in F and G, respectively. In very early embryos (A) DPY-27 exhibits weak and diffuse nuclear staining while
H4K20me1 is diffuse in interphase nuclei and associated with condensed chromatin during mitosis. By the ,40-cell stage (B, F) DPY-27 is enriched on
the X chromosome, while H4K20me1 continues to show a uniform nuclear distribution. Comma-stage embryos (D) contain some nuclei with
H4K20me1 enrichment on the X. This enrichment becomes more apparent as embryogenesis progresses, and by the 3-fold stage (E, G) H4K20me1 is
concentrated in bright foci that co-localize with DPY-27 on the X. Scale bars represent 10 um (A–E) and 2 um (F, G). Monoclonal antibody15F11 was
used to detect H4K20me1.
doi:10.1371/journal.pgen.1002933.g002

H4K20me1 and Dosage Compensation
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are deficient in dosage compensation [12]. Strikingly, H4K20me1

enrichment on the X relative to autosomes was abolished in dpy-21

mutants (Figure 1B–1F), indicating that the DCC facilitates

enrichment of H4K20me1 on the X. To further investigate this

link, we asked whether the DCC could increase H4K20me1 levels

at ectopic sites. Previous studies showed that DCC proteins bind

recruiting elements on the X and then spread to neighboring

regions that lack recruiting sites [6,20]. Spreading is observed in

chromosomal fusions between the X chromosome (which contains

recruiting sites) and an autosome (which lacks recruiting sites;

Figure 3). Using this assay, we observed spreading of H4K20me1

into the autosomal region flanking the site of the fusion, similar to

that seen for the DCC component DPY-27 (Figure 3). This is

consistent with a direct role for the DCC in generating enrichment

of H4K20me1 on the X.

To better define the timing and requirement for dosage

compensation in H4K20me1 enrichment on the X, we performed

immunofluorescence experiments on dosage compensation mutant

embryos. H4K20me1 was not enriched on the X chromosome in

any dosage compensation mutant tested (dpy-21, dpy-26, dpy-28,

and dpy-30; Figure 4 and Figure S4). Instead, H4K20me1 was

evenly distributed on all chromosomes. We next analyzed XO

males, which do not undergo dosage compensation and found no

H4K20me1 enrichment on the single X of XO embryos or XO

adult somatic nuclei (Figure 4B, Figures S2B and S4B). We also

observed no H4K20me1 enrichment to X in adult gut nuclei of

DCC mutants, similar to [21] (Figure S2). These results indicate

that the DCC is required for the X-chromosome enrichment of

H4K20me1.

SET-1 and SET-4 enzymes generate H4K20me1 and
H4K20me2/3, respectively

To determine whether H4K20me1 functions in dosage com-

pensation, we sought to identify the enzymes responsible for

methylation of H4K20. In other organisms, PR-Set7/SETD8

catalyzes monomethylation of H4K20 and Suv4-20 catalyzes di-

and trimethylation of H4K20 [22,23,24]. The C. elegans orthologs

of these proteins are SET-1 (PR-Set7/SETD8) and SET-4 (Suv4-

20). Deletion mutants for both genes are available: set-1(tm1821)

homozygotes develop into sterile adults (S. Mitani, pers. comm.),

whereas set-4(n4600) homozygotes are viable and fertile [25].

Among embryos from fertile set-1/balancer mothers, heterozy-

gous set-1/balancer embryos contain robust H4K20me1 while set-1

homozygous mutant embryos lack detectable H4K20me1 staining

(Figure 5A). Furthermore, by western blot analysis, set-1 mutant

adult extracts lack detectable H4K20me1, as well as H4K20me2

and H4K20me3 (Figure 5B). We conclude that SET-1 is the major

histone methyltransferase required for generation of H4K20me1.

C. elegans SET-4 appears to be the major histone methyltrans-

ferase for converting H4K20me1 to H4K20me2 and H4K20me3.

In set-4(n4600) homozygotes, we observed strongly reduced levels

of H4K20me2 and H4K20me3 and increased levels of

H4K20me1 compared to wild type, both by western blot and

immunofluorescence analyses (Figure 6). In summary, our results

show that SET-1 generates H4K20me1 and SET-4 converts

H4K20me1 to H4K20me2 and H4K20me3, consistent with a

recent report [21]. We note that DPY-27 localization appears

normal in set-1 and set-4 mutants (Figure 5A and Figure 6B),

suggesting that H4K20 methylations are not important for DCC

recruitment.

The X chromosome has lower levels of H4K20me2/3 than
autosomes

In contrast to H4K20me1, the nuclear distributions of

H4K20me2 and H4K20me3 are relatively uniform. To examine

the levels of H4K20me2 and H4K20me3 more closely, we. co-

stained late stage embryos for DPY-27 to mark the X chromo-

some. We observed that H4K20me2 and H4K20me3 were

Figure 3. H4K20me1 ectopically spreads onto the autosomal region of an X;II fusion chromosome. H4K20me1 ChIPs were performed in
wild-type (WT) and YPT41 mixed stage embryos. YPT41 carries a fusion of the right end of X to the left end of chromosome II. The fusion site is
indicated with a dashed line. DPY-27 ChIP-chip and H4K20me1 ChIP-seq enrichment are shown in blue and black, respectively. For each track, the
average of two independent biological replicates is shown as z-scores (standardized log2 ratios of ChIP/Input signals). Genome browser views of
,2 Mb and ,200 kb spanning the fusion site are shown on the top and below, respectively.
doi:10.1371/journal.pgen.1002933.g003

H4K20me1 and Dosage Compensation
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Figure 4. H4K20me1 enrichment to the X chromosome depends on dosage compensation. Three-fold embryos were stained with DAPI
and antibodies to DPY-27 and H4K20me1. (A) Wild-type (WT) XX hermaphrodite, (B) him-8 XO male, (C) dpy-30(y228) (D) dpy-28(y1), (E) dpy-26(n199),
and (F) dpy-21(e428) hermaphrodites. Left panel shows whole embryos, right panels show enlargements of nuclei. Foci of H4K20me1 X-chromosome
enrichment are absent in males and dosage compensation mutants. Scale bars represent 10 um (left column) and 2 um (enlargements). Monoclonal
antibody 15F11 antibody was used to detect H4K20me1.
doi:10.1371/journal.pgen.1002933.g004

H4K20me1 and Dosage Compensation
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depleted on the X chromosome relative to autosomes (Figure S5).

These differences were not observed in the DCC mutant dpy-21

(Figure S5). We investigated the distribution of H4K20me3 at

higher resolution using ChIP. Similar to other organisms (e.g.

[26]), H4K20me3 is found at higher levels on inactive genes

(bottom 20%) than on active genes (top 20%) (Figure 1C).

However, overall levels are lower on the X chromosome

compared to the autosomes, consistent with immunofluorescence

results (Figure 1C–1E and Figure S5). We conclude that in

hermaphrodites, the X chromosome has higher levels of

H4K20me1 and lower levels of H4K20me2 and H4K20me3

relative to autosomes.

Regulation of the SET-4 H4K20me2/3 methyltransferase
contributes to X-chromosome enrichment of H4K20me1

In principle, these patterns could be generated through

differential activity of SET-1 or SET-4 on X versus autosomes.

For example, SET-1 might be more active in generating

H4K20me1 on the X chromosome compared to autosomes, or

SET-4 could be more active in converting H4K20me1 to

H4K20me2 or H4K20me3 on autosomes compared to the X. To

distinguish between these possibilities, we investigated H4K20me1

patterns in set-4 mutant embryos. We observed that H4K20me1

levels in set-4 mutant embryos were elevated and uniformly

distributed in all nuclear regions, with no detectable X-chromosome

enrichment (Figure 6B, 6C; similar to [21]). Similarly, ChIP

experiments show that H4K20me1 is present at similar levels on the

X chromosome and autosomes in set-4 L3 mutant extracts (Figure

S6). We conclude that the higher level of H4K20me1 on the X

chromosome compared to the autosomes in wild type is achieved at

least in part through higher SET-4 directed conversion of

H4K20me1 to H4K20me2/3 on the autosomes.

If dosage compensation inhibits SET-4 from acting on the X

chromosome, then dosage compensation mutants would be expected

to have increased activity of SET-4 on the X, and as a result, reduced

H4H20me1 and increased H4K20me3 levels compared to wild-

type. To test this hypothesis, we carried out western blot analyses

using dosage compensation mutant dpy-21 and sdc-1 L3 extracts. We

found that the level of H4K20me1 is reduced in these mutants

compared to wild type (Figure 6D and data not shown). Reduced

H4K20me1 is due to inappropriate SET-4 activity, because levels

are greatly increased in dpy-21; set-4(RNAi) or sdc-1; set-4(RNAi)

animals (Figure 6D and data not shown). Furthermore, we found

that the reduction in H4K20me1 in dpy-21 mutants is accompanied

by an increase in the level of H4K20me3, as expected if SET-4 has

increased activity (Figure 6E). These results support the hypothesis

that dosage compensation inhibits SET-4 activity on the X

chromosome, leading to relatively high H4K20me1 levels and

relatively low H4K20me3 levels on X.

The SET-1 H4K20me1 methyltransferase is important for
dosage compensation

We reasoned that if H4K20me1 is important for dosage

compensation, then reducing H4K20me1 levels should impair this

Figure 5. The H4K20me1 methyltransferase SET-1 genetically
interacts with dosage compensation mutants and is required
for repression of X-linked gene expression. (A) Embryos were
stained with DAPI and antibodies to DPY-27 and H4K20me1. In set-1/
hT2G embryos (identified by pharyngeal GFP signal from the hT2G
balancer chromosome), DPY-27 and H4K20me1 are enriched on the X
chromosome. In homozygous set-1 mutant embryos, DPY-27 is enriched
on the X, but H4K20me1 is undetectable. Scale bar represents 10 um.
(B) Western blots of H4K20me1, H4K20me2, and H4K20me3 in wild-type
(WT) and set-1(tm1821) mutant adults. The loading control is histone H3.

SET-1 protein is not detected in set-1 mutant extract. (C) Tests of genetic
interactions with dosage compensation mutants. Shown is % embry-
onic lethality of wild type (WT), dpy-21(e428) and dpy-28(y1ts) mutants
after RNAi of the indicated gene. RNAi was performed by feeding as
described in Methods. (D) Expression of autosomal genes in blue
(W07G4.4 and act-1) and X-linked genes in red (aco-1, ajm-1, and apl-1)
in the indicated mutants relative to wild-type. Expression levels are
normalized to autosomal gene W07G4.4. Error bars show 95%
confidence intervals.
doi:10.1371/journal.pgen.1002933.g005

H4K20me1 and Dosage Compensation
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process. To test this hypothesis, we depleted SET-1 in two mutant

backgrounds partially compromised for dosage compensation: null

dpy-21(e428) mutants, which are viable, and a weak temperature-

sensitive allele of dpy-28(y1ts), which shows low embryonic lethality

at the permissive temperature [12,27]. A complete lack of dosage

compensation in XX hermaphrodites results in 100% embryonic

lethality [28]. Therefore, further perturbing the dosage compen-

sation process in the sensitized backgrounds should cause an

increase in embryonic lethality. We first validated the assay by

testing whether knockdown of three different DCC subunits causes

synthetic lethality in the two dosage compensation mutant

backgrounds described above. As expected, RNAi of sdc-2, dpy-

27, or dpy-30 resulted in greatly increased lethality in dpy-21 and

dpy-28(ts) mutant backgrounds compared to wild type (Figure 5C

and data not shown). Using this assay we found that RNAi of set-1

induced synthetic lethality in dpy-21 and dpy-28(ts) mutant

backgrounds, elevating embryonic lethality from 2% in a wild-

type background to 46% and 44% in dpy-21 and dpy-28(ts),

respectively (Figure 5C). RNAi of set-4 or of three other histone

methyltransferases (met-1, met-2, set-2) had no effect (Figure 5C).

The specific synthetic genetic interactions between set-1 and

dosage compensation mutants support the view that H4K20me1 is

important for dosage compensation.

In C. elegans, the DCC represses dosage-compensated genes on

the X by approximately 2-fold. To test directly the role of

H4K20me1 in this repression, we compared the expression of X-

linked dosage-compensated genes to non-compensated autosomal

genes in wild-type and set-1 mutant animals. Because set-1

homozygous mutants are sterile and the X chromosome is not

dosage compensated in the germ line, we focused on genes

expressed in the soma. In order to control for possible germline

effects, we performed analyses in glp-1 mutant animals, which lack

a germ line. Finally, as some X-linked genes are not dosage

compensated, we chose X-linked genes that are upregulated in

dosage compensation mutants dpy-21 or dpy-28. As expected, we

found that the expression of three X-linked genes (aco-1, ajm-1, and

apl-1) relative to two autosomal genes (W07G4.4 and act-1) is

unchanged in glp-1 mutants and significantly increased in dpy-21

and/or dpy-28 mutants (Figure 5D). Similar to the DCC mutants,

we observed a significant increase in the expression of dosage

compensated X-linked genes relative to autosomal genes in the set-

1 mutant (Figure 5D). These results show that H4K20 mono-

methylation mediated by SET-1 has a role in repression of dosage-

compensated X-linked genes.

Discussion

Downregulation of X-linked gene expression during C. elegans

dosage compensation allows study of gene expression mechanisms

that act over large chromosomal regions. Previous studies have

identified a condensin-like complex and other chromatin-associ-

ated proteins required for this process, but the mechanism by

which these proteins lower X-linked gene transcription is not

known. Here we show that the DCC generates X-linked

enrichment of the post-transcriptional histone modification

H4K20me1 and that this modification is important for dosage

compensation.

As we observed here for C. elegans, H4K20me1 in other

organisms is enriched on gene regions and its level is positively

correlated with gene expression [29]. Although H4K20me1 levels

are highest on actively transcribed genes, functional experiments

in vertebrates and Drosophila point to a repressive role in gene

Figure 6. The SET-4 histone methyltransferase is necessary to generate H4K20me2 and H4K20me3. (A) Wild-type (WT) and set-4(n4600)
mutant embryos were stained for DNA (DAPI), and H4K20me1, H4K20me2, or H4K20me3. H420me1 levels are higher and H4K20me2 and H4K20me3
levels strongly reduced in set-4 mutant embryos. Scale bar, 10 um. (B) Enlargements of nuclei in wild-type and set-4(n4600) mutant embryos stained
for DNA (DAPI), H4K20me1, and DPY-27. In set-4 embryos, H4K20me1 does not show enrichment in DPY-27 positive regions. Confocal settings for
H4K20me1 in set-4 were reduced to allow comparison with wild-type images. Scale bar, 2 um. (C) Western blots of extracts made from wild-type and
set-4 adults, probed for H4K20me1, H420me2, or H4K20me3. Histone H3 is a loading control. Compared to wild type, set-4 mutants have increased
H4K20me1 levels, and reduced H4K20me2 and H4K20me3 levels. (D, E) Western blots of H4K20me1 (D) and H4K20me3 (E) in wild-type and dpy-21 L3
mutant extracts. Lower panels show H3 loading controls. (D) H4K20me1 abundance is lower in dpy-21 than in wild type. (E) H4K20me3 abundance is
higher in dpy-21 mutant L3 extract than in wild type. In (D) RNAi of set-4 was additionally performed. H4K20me1 abundance is elevated in both wild-
type and dpy-21 after depletion of set-4. The following primary antibodies were used: H4K20me1 (Diagenode SN-147), H420me2 (Kimura 2E2),
H4K20me3 (Abcam ab78517).
doi:10.1371/journal.pgen.1002933.g006
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expression. Knockdown of the H4K20me1 methyltransferase

Pr-Set7 in human cells caused a two-fold upregulation of genes

normally harbouring H4K20me1 [29], and mutation of Pr-Set7 in

Drosophila leads to position effect variegation, a hallmark of genes

required for heterochromatic gene repression [30]. H4K20me1 is

also associated with the inactive X chromosome during X

inactivation in vertebrates [31]. Therefore, the high levels of

H4K20me1 we observed on the C. elegans X chromosome are

consistent with a role in dosage compensation-mediated repression

of gene expression.

What is the mechanism that leads to higher H4K20me1 levels

and lower H4K20me3 levels on the hermaphrodite X chromo-

somes relative to autosomes? Our results suggest that this is

achieved at least in part through DCC inhibition of SET-4

activity on X. Lower conversion of H4K20me1 to H4K20me2/3

by SET-4 on the X chromosome would lead to relatively higher

H4K20me1 levels and lower H4K20me2/3 levels there. Several

observations support this model. First, dosage compensation

mutants show lower overall H4K20me1 levels and higher

H4K20me3 levels compared to wild type. Second, the lower

overall H4K20me1 level in DCC mutants is due to inappropriate

SET-4 activity, supporting the idea that active dosage compen-

sation inhibits SET-4 activity. Third, the difference in

H4K20me1 levels on the X versus the autosomes is abolished

in set-4 mutants, indicating a role for SET-4 in generating the

asymmetry. We propose that a component of the DCC prevents

SET-4 from acting on the X chromosome, leading to mainte-

nance of H4K20me1 on X, whereas H4K20me1 is preferentially

converted to H4K20me2/3 on the autosomes. Because

H4K20me1 levels are similar on X and autosomes in set-4

mutants, SET-1 might be equally active in generating

H4K20me1 on all chromosomes.

Our results suggest that of the three H4K20 methylation states,

H4K20me1 is the key modification for dosage compensation.

Whereas loss of dosage compensation leads to lethality of XX

embryos, set-4 null mutants, which have strongly reduced levels of

H4K20me2 and H4K20me3, are viable, and RNAi of set-4 does

not enhance lethality of DCC mutants. This suggests that these

modifications are not necessary for dosage compensation. In

contrast, RNAi depletion of maternal and zygotic set-1 leads to loss

of H4K20me1 and embryonic lethality, set-1 genetically interacts

with dosage compensation mutants, and set-1 mutants show

upregulation of X-linked gene expression.

When does H4K20me1 function in dosage compensation? The

DCC is recruited to the X chromosome around the 30-cell stage

whereas X-chromosome enrichment of H4K20me1 occurs several

hours later. This difference in timing suggests that there might be

two separable aspects of dosage compensation during embryo-

genesis, for example initiation and maintenance. Although the

DCC is recruited to the X in early embryogenesis, it is not yet

known when repression of X-linked gene expression is initiated.

The DCC might be active immediately after recruitment or might

become active later in embryogenesis. Furthermore, although

H4K20me1 becomes highly enriched on X in late embryogenesis,

it is possible that a basal level on the X chromosome is functional

earlier. Because the DCC component DPY-27 shows apparently

normal localization to the X chromosome in the absence of SET-1

or SET-4, H4K20me1 does not appear to be a recruitment signal

for the DCC. Instead, H4K20me1 may be important for the

function of the DCC in downregulating gene expression. Key

future questions to address are when during embryogenesis X-

linked gene expression is initially downregulated, and when

H4K20me1 function is necessary.

Regulation of histone modification levels also occurs during

dosage compensation in other organisms. For example, in

Drosophila, where gene expression on the single X chromosome

in males is upregulated two-fold to match that of the two X

chromosomes in females, dosage compensation acts to increase

H4K16ac levels on the single male X. In addition, the inactive X

chromosome of female mammals displays high levels of several

histone modifications, including H4K20me1 [31]. H4K20me1

enrichment correlates with Xist expression, is independent of

transcriptional silencing, and marks the early steps of X

inactivation [31].

In addition to the strong enrichment of H4K20me1 on the X

chromosome in C. elegans, Liu et al. showed that several marks of

gene activity, including H4K16ac, were lower on X linked genes

than on autosomal genes [15]. Using immunofluorescence assays

on gut nuclei, a recent report by Wells et al. showed that the X/A

difference in H4K16ac levels depends on dosage compensation

and on sir-2.1, a putative H4K16 deacetylase [21]. It is not clear if

H4K16Ac plays a role in dosage compensation as depletion of sir-

2.1 did not genetically interact with a DC mutant. The enzyme

that generates H4K16Ac is not yet known.

Using immunofluorescence assays, Wells et al. also observed that

H4K20me1 enrichment on X is dependent on dosage compensa-

tion, and on SET-1 and SET-4 [21]. Our immunofluorescence

results are broadly similar, and our ChIP experiments give a higher

resolution view, strengthening these conclusions. In support of a role

for methylation of H4K20 in dosage compensation, Wells et al.

observed that simultaneous reduction of set-1 and set-4 by RNAi

could rescue mutant males that normally die due to active dosage

compensation. However, the H4K20 methylation state was not

determined after simultaneous depletion of set-1 and set-4, so the

specific alteration of methylation of H4K20 that caused rescue is not

known. The reported X/A differences in H4K16ac levels also

depended on set-1 and set-4, suggesting that H4K16Ac might be

regulated by H4K20 methylation state. Although the exact

mechanisms of dosage compensation vary, studies in different

organisms suggest that global regulation of H4K16ac and

H4K20me1 levels might be a conserved feature of these chromo-

some-wide gene regulation mechanisms.

Our results indicate that H4K20me1 is important for

repression of X-linked gene expression. How might H4K20me1

function in transcriptional repression? Several links in the

literature suggest roles for H4K20me1 in chromatin compaction.

For example, the Malignant-Brain-Tumor (MBT) domains of

human L3MBTL1 compact nucleosomal arrays by recognizing

mono and dimethylation of H4K20 and H1bK26 [32]. Further-

more, L3MBTL1 has transcription repressor activity that is

enhanced by Pr-Set7, and its chromatin association depends on

H4K20me1 [33,34]. It is not yet known whether C. elegans MBT

repeat proteins LIN-61 or MBTR-1 are involved in dosage

compensation or bind H4K20me1.

H4K20me1 has also been shown to be important during

mitosis. H4K20me1 levels are high on mitotic chromatin ([35,36]

and this study), and in mammalian cells inhibition of Pr-Set7

leads to defects in cell cycle progression [36,37,38,39]. Although

the function of H420me1 in cell cycle progression is not yet

understood, a key aspect of the loss of function phenotype is

reduced chromosome compaction. Furthermore, a recent study

demonstrated that two components of condensin II, N-CAPD3

and N-CAPG2, can directly bind H4K20me1 [35]. This raises

the exciting possibility that condensin IDC might function to

compact chromatin through binding H4K20me1. Increased

compaction of the X chromosome relative to the autosomes

might reduce access by RNA polymerase, leading to lower

H4K20me1 and Dosage Compensation
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X-linked gene expression. Consistent with this idea, DCC

mutants were recently shown to have increased RNA polymerase

II levels on the X [13]. We propose that condensin complexes

and H4K20me1 might be intimately linked in diverse chromatin-

regulating events.

Methods

Worm culture and strains
The following strains were used and cultured using standard

methods (Brenner, 1974): TY0621 [yDp1(IV,V:f); dpy-26(n199) unc-

30(e191) IV], DR1410 [dpy-27(y56)/qC1 III], TY1621 [unc-

49(e382) dpy-28(y1ts) III], TY148 [dpy-28(y1ts) III], CB428 [dpy-

21(e428) V], KK0423 [dpy-21(e428) par-4(it57ts) V], TY1936 [dpy-

30(y228) V/nT1[unc-?(n754) let-?](IV;V)], SS1075 [set-1(tm1821)/

hT2G(qIs48) I;III], JA1574 [set-1(tm1821)/hT2G(qIs48) I;III],

MT14911 [set-4(n4600], YPT41 [X;II].

Chromatin immunoprecipitation analyses
Late embryo (LE) extracts were prepared by growing wild-type

N2 adult worms from synchronized L1s in standard S-basal

medium with shaking. Worms were fed HB101 E. coli and grown

at 20uC until they were gravid, approximately 70 hours. Embryos

were obtained by dissolving adult worms with bleach, and then

the embryos were aged by incubating in M9 media for 3.5 hrs at

20uC with gentle rocking. The embryos were washed once with

PBS and flash frozen in liquid nitrogen, then processed for ChIP

as in [40]. Wild-type, dpy-21(e428), and set-4(n4600) L3 and fem-2

YA animals were grown and ChIPs performed as in [41] except

that DNA was sonicated to a size range of 200–400 bp. EE and

L3 in Figure 1 are from [15] (Abcam ab9051; lot 104513).

H4K20me1 ChIP conditions were: LE (1 mg extract and 5 ul

Diagenode SN-147), fem-2 young adults (1.25 mg extract and

3 ug Abcam ab9051 lot 104513), dpy-21 L3s (500 ug extract and

2 ug Abcam ab9051 lot 104513), WT and set-4 L3s in Figure S6

(500 ug extract and 2 ug Abcam ab9051 lot 602259), WT L3 in

Figure S7 (500 ug extract and 5 ul Diagenode SN-147). The

Diagenode SN-147 and Abcam ab9051 antibodies give concor-

dant patterns by ChIP in L3 extracts (Figure S7A, S7B).

H4K20me3 ChIP conditions: 500 ug L3 extract and XX Abcam

78517 lot 827718. Antibodies used for ChIP, western blot, or

immunofluorescence were tested for specificity to histone peptide

tails using dot blots ([42] and http://compbio.med.harvard.edu/

antibodies/).

Early Embryo, Late Embryo, L3, and dpy-21 L3 H4K20me1

ChIPs and L3 H4K20me3 ChIPs were hybridized to a C. elegans

full-genome tiled microarray (NimbleGen 2.1, Roche). For

H4K20me1 ChIPs, log2 ratios of IP/Input were obtained and

standardized so the autosomal signal had mean 0 and standard

deviation 1. The H4K20me3 L3 ChIP dataset was processed

similarly except that all chromosome regions were used. fem-2

young adult (Figure 1) and WT and set-4 L3 H4k20me1 ChIPs

in Figure S6 were sequenced on the Illumina platform, aligned

using BWA with default settings [43], normalized using BEADS

[44], then converted to log2 ratios of BEADS scores (enrich-

ment relative to input) and standardized so the mean of the

autosomal signal was 0 and the standard deviation 1. Biological

ChIP-chip and ChIP-seq replicates were averaged after

standardization. Gene profile plots (Figure 1 and Figure S6)

were generated by aligning genes at their TSS and TES

(WS190/ce6). The genomic regions 1 kb upstream to 1 kb

downstream from TSS and 1.5 kb upstream to 1 kb down-

stream from TES were divided into 50-bp bins. Genes were

grouped into top 20% and bottom 20% expressed and

autosomal and X-linked genes. Mean signals for each group

of genes and each bin were plotted as well as the 95%

confidence intervals of the mean (as error bars). Profile plots of

intergenic regions were obtained by first identifying regions of

at least 10 kb length without any annotation (WS190/ce6) (491

such regions on autosomes, 193 on chromosome X). The

regions were aligned at their center and the genomic regions

from 5 kb upstream to 5 kb downstream from the center were

divided into 50 bp bins. Mean signals for the autosomal and X

intergenic regions were plotted as well as the 95% confidence

intervals of the means.

Boxplots (Figure 1 and Figure S7) were obtained after 1 kb

median smoothing along the chromosomes of the respective

standardized log2 ratios. Each box indicates the median with the

center line and extends from the 25th to the 75th percentile of the

standardized log2 ratios; whiskers extending from the box indicate

the 2.5th and 97.5th percentiles.

Transcript data for the EE, LE, L3 and YA stages were

obtained from the modENCODE DCC (http://intermine.

modencode.org). The platform was a single color 4-plex Nimble-

gen expression array with 72,000 probes (three 60-mer oligo

probes per gene). Quantile normalization [45] and the Robust

Multichip Average (RMA) algorithm [46] were used to normalize

and summarize the multiple probe values per gene to obtain one

expression value per gene and sample.

Western blotting
Sample buffer was added directly to worms, samples heated to

65uC for 10 minutes, sonicated for 15 minutes (30 sec in/30 sec

out), incubated at 65uC for 5 min and finally boiled at 95uC for

5 min. Proteins were separated on 4–12% NuPage SDS pre-cast

gels (Invitrogen). The following antibodies were used: anti-

H4K20me1 (Abcam ab9051 at 1:2000), anti-H4K20me2 (H.

Kimura monoclonal antibody 2E2 at 1:20,000), anti-H4K20me3

(Abcam ab78517 at 1:500), anti-H3 (Active Motif 39163 at

1:8000), and anti-SET-1 (SDI SDQ3895). JA1574 was used to

obtain set-1 homozygotes in Figure 5B.

Immunostaining
Immunostaining of embryos and dissected intestines was done

using methanol/acetone fixation as in [47] (Figure 2; Figure 5;

Figures S1, S2, and S4) or using methanol fixation as in [48]

(Figure 4, Figure 6, Figure S5). Germline immunofluorescence

experiments (Figure S3) were carried out after dissecting worms in

egg buffer containing 0.1% Tween 20 and fixation in 1%

formaldehyde in egg buffer [49]. SS1075 was used for the IF

experiment in Figure 5A. Primary antibodies used are indicated in

the figure legends. Antibody concentrations used were: anti-

H4K20me1 Kimura 1F11 (1:40,000), anti-H4K20me1 Diagenode

SN-147 (1:100,000), anti-H4K20me1 Abcam ab9051 (1:400 for

Figure S1; 1:5000 for Figure S3), anti-H4K20me2 Kimura 2E2

(1:25,000), anti-H4K20me3 ab78517 (1:200), anti-DPY-27 SDI

SDQ3995 (1:4000), anti-GFP Abcam ab290 (1:6000), anti-

H3S10p Kimura 10H12 (1:1000), anti-HIM-8 (1:250). Secondary

antibodies were purchased from Jackson ImmunoResearch or

Molecular Probes.

qPCR quantification of gene expression
Total RNA was extracted from N2 (wild type), dpy-21(e428),

dpy-28(y1), or set-1(tm1821) L3 worms grown at 25uC using

TriPure (Roche). RNA was further purified using an RNeasy

column (Qiagen). Reverse transcription was carried out using

the Invitrogen SuperScript III First-Strand Synthesis System.

H4K20me1 and Dosage Compensation
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Quantitative PCR was performed using primers specific to the

target genes:

Chromosome V:

W07G4.4 F: GCAATCGCTCCAGCCGTTAACAAT; R:

TCGTCCAGATGGAACGACAGATGA

act-1 F: TGCAGAAGGAAATCACCGCTCTTG; R: AAG-

CACTTGCGGTGAACGATGGAT

Chromosome X:

apl-1 F: ACGACGACGATGAGGATGATGCTT; R: TGA-

ACTTCTCGGCTCCCTTTGGAT

aco-1 F: CAAGATCAACCCAGTATGCCCAGT; R: AC-

CTGATGGACGATTCCAGATCCT

ajm-1 F: TCGTCTTGATGAGATGGAACGCGA; R: AAG-

TTCTGCGTTACGTTGGGCTTG

Gene expression levels in each strain were normalized to the

levels of the autosomal gene W07G4.4. Expression of each gene in

wild-type N2 was then set to 1 and mutant expression levels

expressed relative to N2.

Genetic interaction tests
RNAi by feeding was performed on N2 (wild type), dpy-21(e428)

and dpy-28(y1) animals as follows: 3–5 L3 larvae were placed on

RNAi bacteria for three days at 15uC, transferred to new RNAi

plates for 24 hours, transferred again after 24 hours, then

removed. The progeny on the latter two plates were scored for

embryonic lethality. We note that RNAi of set-1 leads to

embryonic lethality in the N2 (wild-type) background in embryos

produced in the next 24 hours of RNAi feeding, or if RNAi is

performed by injection (not shown). RNAi plates were prepared as

in [50]. The following RNAi clones were used from [51,52]: sdc-2

(C35C5.1), set-1 (T26A5.7), set-2 (C26E6.9), met-1 (C43E11.3), and

met-2 (R05D3.11). The set-4 RNAi clone was made by PCR

amplifying and cloning a portion of the set-4 gene into RNAi

feeding vector L4440. The primers used were: atacgaattca-

caggtcggc and tgctactacgcttgtcgtcg. RNAi plasmids were in the

HT115(DE3) bacterial strain, which was used as the control. All

RNAi clones were verified by sequencing.

Assaying ectopic spreading
H4K20me1 ChIPs were performed in mixed stage embryos

from wild-type N2 normal karyotype strain (2 replicates) and in

YPT41 X;II fusion strain (2 replicates) using methods described

previously [53]. 1 mg of total embryo extract and 2 ug of

H4K20me1 antibody (Abcam ab9051) were used per ChIP. The

ChIP DNA was prepared for Illumina multiplex sequencing with

slight modifications to the manufacturers protocol [54]. Briefly,

sequencing libraries were prepared from half of the ChIP DNA

and 10 ng of corresponding input DNA. NEB Klenow, T4 DNA

polymerase and T4 PNK were used to repair ends at 20uC for

30 min. Exo(-) Klenow fragment and dATP was used to add

adenosine at the 39 ends for 1 hour at 37uC. DNA was ligated to

multiplex adaptors (Illumina) and amplified by PCR, introducing

the following indices: N2 H4K20me1 ChIP index #6

(GCCAAT), N2 Input index #12 (CTTGTA), YTP41

H4K20me1 ChIP replicate 1 index #2 (CGATGT), input index

#3 (TTAGGC), and H4K20me1 ChIP replicate 2 index #1

(ATCACG), input index #5 (ACAGTG). DNA between 200–

500 bp in size was gel purified. Multiplexed single-end sequenc-

ing was performed by GAIIx at the UNC high-throughput

sequencing facility. The sequencing reads, obtained from the

Illumina pipeline in fastq format, were aligned to the ce6

(WS190) version of the C. elegans genome with Bowtie [55], using

default parameters. Each sequence read was extended to

calculate coverage per base pair using MACS [56]. The coverage

from the input data was subtracted from that of the ChIP data,

and ChIP enrichment was standardized by z score transforma-

tion.

Datasets
Accession numbers for datasets generated in this paper are listed

in Table S1.

Supporting Information

Figure S1 Nuclear abundance of H4K20me1 is cell cycle

regulated. Wild-type embryos were stained with DAPI (blue) and

antibodies to H3S10ph (red) and H4K20me1 (green). In early

embryos, H4K20me1 levels are higher on condensed prometa-

phase and metaphase chromosomes, marked with the mitotic

marker H3S10ph, than in interphase nuclei. Scale bar represents

10 um. Monoclonal antibody 10H12 was used to detect

H4K20me1.

(PDF)

Figure S2 H4K20me1 enrichment on the X chromosome in

adult somatic cells depends on dosage compensation and SET-1.

Dissected adult tissues were stained as in Figure 2. In wild-type

(WT) XX intestinal nuclei (A) DPY-27 and H4K20me1 co-localize

on the X chromosomes. H4K20me1 is diffusely nuclear in

intestinal cells of wild-type XO males (B) and XX animals

defective in dosage compensation: (C) dpy-21(e428), (D) dpy-

26(n199), and (E) dpy-28(y1). Intestinal nuclei of set-1 mutant

animals (F) lack detectable H4K20me1. The brightness of

H4K20me1 in panel F is over-exposed to show the lack of

nuclear stain. Scale bar represents 10 um. Monoclonal antibody

15F11 was used to detect H4K20me1.

(PDF)

Figure S3 H4K20me1 exhibits dynamic localization in the germ

line. (A) Dissected gonads from wild-type hermaphrodites were

stained with DAPI and an antibody to H4K20me1. H4K20me1

levels are high in the distal region corresponding to premeiotic

nuclei. Levels drop as nuclei move proximally and enter meiosis.

(B) Gonads were stained with DAPI (red) and antibodies to

H4K20me1 (green) and an X-chromosome binding protein HIM-

8 (blue). H4K20me1 is present on the X in transition zone nuclei

in early meiotic prophase. In mid-pachytene, H4K20me1 is

significantly depleted from the X. In late pachytene nuclei,

H4K20me1 relocalizes to the X. The Abcam ab9051 antibody

was used to detect H4K20me1.

(PDF)

Figure S4 H4K20me1 enrichment on the X chromosome

depends on dosage compensation. This figure resembles Figure 4,

but shows results with a different antibody to H4K20me1. Three-

fold embryos were stained with DAPI and antibodies to DPY-27

and H4K20me1. In wild-type XX embryos (A) DPY-27 and

H4K20me1 are concentrated on the X chromosome. In XO

embryos (B) DPY-27 is absent and H4K20me1 is diffusely nuclear.

In XX embryos deficient in dosage compensation, dpy-21(e428)

(C), dpy-26(n199) (D), and dpy-28(y1) (E), H4K20me1 is diffusely

nuclear. Scale bars represent 10 um (A–E, left column) and 2 um

(A–E, enlargements). The Diagenode SN-147 antibody was used

to detect H4K20me1.

(PDF)

Figure S5 H4K20me2 and H4K20me3 show reduced staining

on X chromosomes compared to autosomes. Wild-type (WT) and

dpy-21 mutant embryos stained for DNA (DAPI), DPY-27, and (A)

H4K20me2 or (B) H4K20me3. The X chromosome, marked by

H4K20me1 and Dosage Compensation
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DPY-27, shows lower staining of both modifications than other

regions. In dpy-21 mutants, this difference is not observed.

(PDF)

Figure S6 Enrichment of H4K20me1 on X is abolished in set-4

mutants. (A) Genome browser tracks of H4K20me1 ChIP-seq

signals across representative regions of chromosome I and

chromosome X in wild-type (WT) and set-4 mutant L3 larvae.

Signal is displayed as z-scores (standardized log2 ratios of ChIP/

Input signals). Enrichment of H4K20me1 on X is lost in set-4

mutants. (B) Plots of H4K20me1 signal across the TSS (transcript

start site) and TES (transcript end site) of genes on X (red) and

autosomes (blue). Genes in the top 20% of expression (dark shades)

and bottom 20% (light shades) are plotted separately. (C) Plots of

H4K20me1 signal centered at intergenic regions at least 5kb from

any annotated feature. (D) Box plots of overall H4K20me1 signals

on each chromosome. Each box shows the median and extends

from the 25th to the 75th percentile of the z-scores in the set;

whiskers extending from the box indicate the 2.5th and 97.5th

percentiles.

(PDF)

Figure S7 Consistency of different H4K20me1 antibodies in

ChIP. (A) Correlation between ChIP-chip signals using antibodies

to H4K20me1 from Abcam and Diagenode (r = 0.95). (B) Plots of

H4K20me1 signal across the TSS (transcript start site) and TES

(transcript end site) of genes on X (red) and autosomes (blue).

Genes in the top 20% of expression (dark shades) and bottom 20%

(light shades) are plotted separately. Plots generated using data

from the two antibodies show similar patterns.

(PDF)

Table S1 ChIP dataset accession numbers. modENCODE or

GEO accession numbers for datasets generated or used in the

paper. modENCODE data can be obtained from http://data.

modencode.org/ or modMine: http://intermine.modencode.org/;

GEO data can be obtained from http://www.ncbi.nlm.nih.gov/

geo/

(XLS)
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