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Broad chromosomal domains of histone modification
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Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our
understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments
using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and
eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of
chromatin marks with shared features: two groups correlate with gene repression, two with gene activation, and one with
the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated
H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ
cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and be-
tween chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent
with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the
absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin
such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is
enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome
arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed
with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of
the organization and deployment of the C. elegans genome during development.

[Supplemental material is available for this article. The data in this paper are available online from the modENCODE Data
Coordination Center website (http://intermine.modencode.org/). Accession numbers for all ChIP-chip experiments are in
Supplemental Table S1.]

Caenorhabditis elegans was the first animal with a completed ge-

nome sequence, which accelerated investigations into the molec-

ular bases of a wide range of biological processes (The C. elegans

Sequencing Consortium 1998). All genome functions occur in the

context of chromatin, which comprises DNA, histones, and other

structural proteins and enzymes, which together regulate tran-

scription and other aspects of genome dynamics. An especially

widespread and important mode of regulation is mediated by

post-translational modification of histone tails by specific en-

zymes (Kouzarides 2007). Therefore, deciphering how the genome

is organized and deployed during development requires knowl-

edge of the in vivo genomic locations of differentially modified

histones.

The C. elegans genome has a number of features that make it

a particularly powerful system for advancing our understanding of

genome biology. The genome is compact, consisting of 100 Mb of

DNA containing approximately 20,000 protein-coding genes.

Most introns are short, and average intergenic distances are small.

There is a good correspondence between genomic and experi-

mental data, since the reference genome is derived from the Bristol

N2 wild-type strain, the same strain used by the vast majority of

C. elegans labs. Rapid molecular genetic and reverse genetic methods
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make it possible to efficiently assess the biological function of spe-

cific coding and non-coding sequences.

The C. elegans genome is organized into six chromosomes.

Hermaphrodites have five pairs of autosomes and a pair of X chro-

mosomes, whereas animals inheriting only one X chromosome

develop as males. To equalize the expression of X-linked genes in the

two sexes, transcription from both X chromosomes is partially re-

pressed in somatic cells of hermaphrodites by a dosage compensa-

tion complex related to mitotic condensin (Meyer 2010). In both

XX and XO worms, the X chromosomes are largely silenced in germ

cells by a distinct and less-well-understood machinery than used in

the soma (Schaner and Kelly 2006). C. elegans does not have a de-

fined centromeric locus on each chromosome; instead, the chro-

mosomes are holocentric, with centromeric function distributed

along the length of each chromosome (Albertson and Thomson

1982; Maddox et al. 2004). During meiosis, a special region near one

end of each chromosome, known as a ‘‘Homolog Recognition Re-

gion’’ or ‘‘Pairing Center,’’ mediates pairing and synapsis between

homologous chromosomes through interactions with components

of the nuclear envelope (MacQueen et al. 2005; Phillips et al. 2005;

Phillips and Dernburg 2006). Meiotic crossover recombination is

elevated on both distal regions or ‘‘arms’’ of the five autosomes,

which are enriched for repeated sequences and where genes are

more sparse and introns are relatively large compared to the central

region of the chromosome (Barnes et al. 1995; The C. elegans Se-

quencing Consortium 1998; Prachumwat et al. 2004). The X chro-

mosome displays more uniform gene density and recombination

rates along its length. Zones of highly condensed heterochromatin

have not been observed by cytological analysis (Albertson et al.

1997).

The first C. elegans chromatin factors whose distributions were

analyzed genome-wide were DPY-27 and SDC-3, members of the

dosage compensation complex (Ercan et al. 2007). That and sub-

sequent studies (Ercan et al. 2009; Jans et al. 2009) revealed that the

dosage compensation complex is recruited to and spreads from

specific sites on the X chromosome and is most concentrated up-

stream of active X-linked genes. Since then, a limited number of

histone modifications or variants have been mapped in C. elegans.

These studies showed that the organization of C. elegans genic chro-

matin has properties similar to those of other organisms and addi-

tionally provided novel insights into chromatin structure and

function (Whittle et al. 2008; Gu and Fire 2009; Kolasinska-Zwierz

et al. 2009; Ooi et al. 2009; Furuhashi et al. 2010; Greer et al. 2010;

Hall et al. 2010; Rechtsteiner et al. 2010). For example, H3K4me3

and the histone variant HTZ-1/H2A.Z were found to be enriched in

promoter regions of actively transcribed genes and H3K36me3 on

gene bodies, with the latter more enriched on exons than introns

and transmitted during embryogenesis independently of ongoing

transcription (Whittle et al. 2008; Kolasinska-Zwierz et al. 2009;

Furuhashi et al. 2010; Rechtsteiner et al. 2010). Further maps of

H3K4me3 uncovered links with longevity and developmental life

history (Greer et al. 2010; Hall et al. 2010). H3K9me3, a typical

mark of silent chromatin, was observed to be at higher levels on

silent genes but also enriched on chromosome arms (Gu and Fire

2009). These studies demonstrate the value of global mapping stud-

ies and argue for the usefulness of a more comprehensive map.

To better understand the relationships between genome or-

ganization and function in C. elegans, we have determined the

distributions of 19 histone modifications, a histone variant, a his-

tone methyltransferase, RNA Polymerase II, a nuclear envelope–

associated protein, and proteins that participate in dosage com-

pensation, initially in two different embryo populations and L3

larvae. Early embryos (EE) are expected to reflect a mix of chro-

matin status inherited through the oocyte and sperm and chro-

matin states associated with global activation of zygotic tran-

scription, rapid mitotic division, and establishment of dosage

compensation. Mixed stage embryos (MxE) have robust zygotic

transcription of genes involved in tissue differentiation and mor-

phogenesis, and most have fully implemented dosage compensa-

tion. L3 larvae primarily consist of fully differentiated somatic cells

and mitotic germ cells. Using these data, we investigated how the

distributions of numerous chromatin components are related to

each other and to gene expression and other chromatin functions.

All of the data are publicly available at the modENCODE Data

Coordination Center website (http://intermine.modencode.org/)

as a resource for the scientific community.

Results and Discussion

Histone modifications and chromatin factors cluster
by function

A total of 44 ChIP-chip (chromatin immunoprecipitation on

microarray) experiments were conducted in C. elegans early em-

bryos, mixed stage embryos, or L3 larvae. Each experiment was

performed at least in duplicate from independent C. elegans cultures

and extract preparations. We used antibodies to detect genome-wide

distributions for 19 different histone modifications (H3K4me1/2/3,

H3K9me1/2/3, H3K27me1/3, H3K36me1/2/3, H3K79me1/2/3,

H3K27ac, H4K8ac, H4K16ac, H4tetra-ac, and H4K20me1), one

histone variant (HTZ-1), seven chromatin factors (DPY-26/27/28,

SDC-3, MIX-1, LEM-2, MES-4), and RNA polymerase II. All anti-

bodies used for ChIP were validated for target specificity (see

Methods). The detection platform, NimbleGen Custom 2.1M Til-

ing arrays, provided almost complete tiled coverage across the

genome with probes of 50 nt in length. Biological replicates dis-

played reproducibility when viewed on the genome browser and

correlated well across the genome (Supplemental Fig. S1; Supple-

mental Table S1). Data were normalized and smoothed, and rep-

licates were combined to identify enriched regions and genome-

wide signal profiles (see Methods).

To investigate relationships between the distributions of par-

ticular modifications and chromatin-associated proteins, we first

determined the genome-wide correlation of each ChIP data set with

each of the other data sets. We included three other parameters—

repeat density, gene density, and gene expression (RNA-seq) data—

in these genome-wide comparisons. We next performed hierarchi-

cal clustering of the measured genome-wide correlation coefficients

(Fig. 1). This analysis identified five major groups (A–E in Fig. 1).

Each mark or protein analyzed at different stages was highly cor-

related between the stages and therefore clustered together, as did

marks that are known to function in related mechanisms, such as

transcriptional activation, repression, or dosage compensation. For

example, H3K9me3 data in both EE and L3 (in Group B) were

highly correlated with each other. Similarly, marks associated with

transcription elongation such as H3K36me1/2/3 and H3K79me1/

2/3 (in Group E) were also highly correlated with each other across

developmental stages. The observation of similar patterns at dif-

ferent developmental stages suggests that these chromatin proteins

and histone modifications perform their core functions through-

out worm development. The comparative analysis of all of the data

sets validated previously known or predicted functional relation-

ships and suggested functions for some specific marks and factors.

The most striking features of each group are described below.
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H3K27me3 distribution is anti-correlated with RNA levels

Group A (Fig. 1) includes H3K27me3 in both early embryos and

L3s and is strongly anti-correlated with gene expression, RNA Pol II

localization, and multiple marks associated with transcriptionally

active regions (Fig. 1), indicating that H3K27me3 is enriched in

transcriptionally silent regions of the worm genome. Consistent

with this observation, the magnitude of H3K27me3 signals over

protein-coding genes is inversely correlated with their expression

levels (Supplemental Fig. S2). These findings are in accord with

data from other experimental systems showing that H3K27me3 is

associated with repressed genes (Muller and Verrijzer 2009).

Histone H3K9 methylation is coupled to the distribution
of repetitive sequences and association with
the nuclear membrane

Group B (Fig. 1) contains H3K9me1/2/3, LEM-2, and repetitive

sequences. H3K9me3 is a hallmark of heterochromatin and is often

enriched on repetitive sequences (Peters et al. 2003; Guenatri et al.

2004; Martens et al. 2005). The nuclear membrane protein LEM-2 is

known to localize at the nuclear envelope (Lee et al. 2000; Ikegami

et al., unpubl.). Analysis of the association of H3K9me3 and LEM-2

with genes ranked by expression levels revealed enrichment of

both on silent genes (Supplemental Fig. S2). In addition, all three

methylation states of H3K9 show enrichment on repeat sequences

(Gerstein et al., unpubl.). These findings

suggest that H3K9 methylation and/or

association with the nuclear envelope

help maintain silencing of repetitive se-

quences in worms and may contribute to

the maintenance and stability of hetero-

chromatin-like regions, as observed in

other organisms (Peng and Karpen 2008).

H3K27me1 and H4K20me1 are
enriched on the X chromosome

Group C (Fig. 1) is dominated by C. ele-

gans dosage compensation proteins (DPY-

26, DPY-27, DPY-28, SDC-3, and MIX-1).

Consistent with extensive evidence that

these proteins collaborate to repress ex-

pression of X-linked genes in XX her-

maphrodites (Meyer 2005; Ercan et al.

2007), their ChIP data sets show higher

signals on the X chromosome than on

autosomes (Supplemental Fig. S2), as ob-

served previously for some of these fac-

tors (Ercan et al. 2007, 2009; Jans et al.

2009). Interestingly, two histone modifi-

cations, H3K27me1 and H4K20me1, also

group with the dosage compensation

proteins (Supplemental Fig. S2), suggest-

ing potential roles in dosage compensa-

tion (see below).

HTZ-1, H4 acetyl marks, and
H3K4me1/2/3 are found at
the promoters of heavily
transcribed genes

Group D (Fig. 1) includes H3K4me2/3,

H3K27ac, H4K8ac, H4K16ac, H4tetra-ac, and HTZ-1/H2A.Z, all of

which are typically enriched in the promoter regions of highly

expressed genes (Barski et al. 2007; Wang et al. 2008). Gene profile

plots show these marks to be similarly enriched at the 59 ends of

highly expressed C. elegans genes (Supplemental Fig. S2). H3K4me3

and H3K27ac share especially similar profiles over promoters,

suggesting coordinated regulation and perhaps similar roles.

RNA polymerase II is tightly associated with H3K36
and H3K79 methylation

Group E (Fig. 1) contains marks that overlie most of the tran-

scribed regions of the genome, including RNA Pol II, H3K36me1/

2/3, H3K79me1/2/3, and MES-4, an H3K36 methyltransferase.

Also falling into this group are transcripts themselves, as mapped

by RNA-seq (Gerstein et al., unpubl.). All of the marks in this

group are enriched in the bodies of highly expressed genes (Sup-

plemental Fig. S2). H3K79me2/3 is enriched in regions proximal

to the transcript start site, while H3K36me3 is more uniformly

distributed, as has been observed in human genes (Barski et al.

2007; Steger et al. 2008). Finding H3K79 methylation group-

ing with H3K36 methylation and RNA Pol II is consistent with

the observation in mammalian systems that H3K79 methylation

is ubiquitously coupled with gene transcription (Steger et al.

2008).

Figure 1. The distributions of histone marks, chromatin proteins, and genome features cluster into
distinct groups. Data for all factors were clustered based on the pairwise Pearson correlations of the
median signals in 1-kb windows along all chromosomes. (Red) Positive correlations; (blue) negative
correlations. Factors are (brown) early embryo (EE), (green) mixed embryo (MxE), (purple) L3 larvae
(L3), and (black) common features. Hierarchical clustering grouped all factors into two major groups,
one related to transcriptionally repressed states (upper left) and the other related to transcriptionally
active states (bottom right). The factors associated with repressed states clustered into three sub-
groups—A, B, and C. The factors associated with transcriptionally active states clustered into two
subgroups—D associated with promoters and 59 regions of genes and E associated with gene bodies.
The dendrogram to the left of the heatmap shows the clustering tree. Pairs of horizontal branches linking
two subclusters represent the distance of the two farthest separated factors in the subclusters calculated
by the ChIP genome profile dissimilarity.
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Worm chromosomes contain broad chromatin domains
that differentiate the centers from the arms

To examine whether histone modifications or chromatin proteins

mark particular chromosomal regions on a global scale, we plotted

ChIP-chip signals, ordered by group, across each worm chromosome

(Fig. 2; see Supplemental Fig. S3 for an enlarged view of each chro-

mosome). This analysis revealed striking broad domains of signal

enrichment and depletion, with central regions having chromatin

properties distinct from distal regions. Previous studies in C. elegans

have revealed that the distal regions, termed ‘‘chromosome arms,’’

are distinct from the center in several respects. Gene expression is

generally higher in central regions than in arm regions, and central

regions contain more essential genes, especially on Chr I and III (The

C. elegans Sequencing Consortium 1998; Kamath et al. 2003). The

arm regions, which span up to ;4 Mb at each end, contain more

repeated sequences (The C. elegans Sequencing Consortium 1998).

Moreover, the arms show markedly higher meiotic recombination

rates than central regions (Barnes et al. 1995; The C. elegans Se-

quencing Consortium 1998; Prachumwat et al. 2004). Recom-

bination rates (Fig. 2, black lines) are fairly constant within arm and

central regions, with transitions that vary in their abruptness both

between chromosomes and on the two arms of each chromosome

(Fig. 2; Barnes et al. 1995; Rockman and Kruglyak 2009).

Both arms of each autosome and the left arm of the X show

strong association with the inner nuclear membrane protein LEM-2

(Fig. 2; Ikegami et al., unpubl.). Compared to chromosome centers,

the arms are enriched in repressive histone marks, especially

H3K9me1/2/3, and slightly depleted of active histone marks (Fig.

2). The boundaries between the arms and central domains that

emerged from our analysis correspond well with recombination

rate transition points (Fig. 2). Examination at higher resolution

revealed that the domain transitions do not occur at precise loca-

tions (Supplemental Figs. S3, S4). At the transition from an arm to a

central domain, H3K9 methylation density (especially H3K9me1

and H3K9me2) gradually decreases over several hundred kilobases

and many genes, while the density of marks associated with gene

activity such as H3K4me3, H3K36me3, and H3K79me3 gradually

increases. Gradual transitions suggest that the domain structure of

C. elegans chromosomes may not be maintained by unique bound-

ary elements.

H3K9 methylation in Drosophila and mammals has been

shown to be important for the stability of repetitive sequences

(Peng and Karpen 2008). The enrichment of H3K9 methylation on

the repeat-rich arm regions of C. elegans suggests a similar role.

Consistent with this possibility, all three H3K9 methyl marks are

enriched on transposable elements and other repeated sequences

(Gerstein et al., unpubl.). Although H3K9me1/2/3 are enriched on

both chromosome arms, enrichment is

often higher on the arm that contains the

meiotic pairing center (Fig. 3A). During

meiosis, interactions between homolo-

gous chromosomes occur through the

meiotic pairing centers. An unusual group

of zinc finger proteins (ZIM proteins)

binds to these regions, connecting the

meiotic pairing centers to the microtubule

cytoskeleton to promote chromosome

movement and synapsis (Phillips and

Dernburg 2006; Sato et al. 2009). A family

of short, dispersed sequences that de-

termine the meiotic pairing centers have

been deduced from in vivo and in vitro

binding experiments (Phillips et al. 2009).

Although these sequences are distributed

within the broad repressive chromatin

domains (Fig. 3A), comparison of their

locations with H3K9 methylation re-

vealed that the sequences actually lie in

regions with locally reduced levels of

H3K9me1 and H3K9me2 (Fig. 3B). Asso-

ciation of H3K9me3 with the meiotic

pairing arm has been previously noted

and shown to be independent of ZIM

binding (Gu and Fire 2009). Additional

studies will be necessary to determine the

possible contribution of H3K9 methyla-

tion to meiotic chromosome behavior.

Based on the patterns of H3K9

methylation (Fig. 2; Supplemental Fig.

S3), we estimated the physical boundaries

between the arms and central region of

each chromosome (Fig. 3C). These co-

ordinates agree well with the traditional

definitions of the arms and central regions

based on recombination rates (Barnes

Figure 2. Histone marks and chromatin proteins show distinct patterns on different chromosomes
and on the arms versus central region of each chromosome. The signal intensity of all analyzed factors is
shown across all six chromosomes. Colored cells show median signals in 1-kb windows: (red) high
signal, (blue) low signal. Each row corresponds to a factor. The order of factors is as shown in Figure 1
and in the key to the right. The colored labels to the right of each track indicate stage, as in Figure 1.
(Thick black lines) Marey plots of recombination distances. Enlarged views of each chromosome are in
Supplemental Figure S3.
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et al. 1995; Rockman and Kruglyak 2009). Consistent with the en-

richment pattern of repressive H3K9me marks, genes on the arm

regions show lower expression than those in the central regions (the

average mRNA abundance of arm genes compared to genes in the

chromosome centers was 1.4-fold lower in early embryos and 1.6-

fold lower in L3s) (data not shown). However, there are well-

expressed genes present on the arms, and gene profile plots show

that they have distributions of active and repressive marks that are

similar to the distributions on highly expressed genes in chromo-

some centers (Supplemental Fig. S5). These findings suggest that the

gene expression environment on the arms is not analogous to that

of classical heterochromatic domains, in which genes show distinct

histone modification landscapes (Yasuhara and Wakimoto 2008).

Consistent with this, some of the repressive domains, such as the

left arm of Chr I, contain regions rich in active marks (Fig. 2; Sup-

plemental Fig. S3). This observation suggests the broad repressive

domains on the chromosome arms contain islands of active chro-

matin with robust gene expression potential. These transcription-

ally active regions may correspond to the small chromatin loops

recently proposed to emerge from the broad arm domains closely

associated with the nuclear lamina (Ikegami et al., unpubl.).

Chr I and Chr III are more enriched for marks of transcrip-

tionally active chromatin than other chromosomes, with Chr Vand

Chr X being the least enriched (Fig. 2). Gene expression profiling

correlated with these findings: Chr I and Chr III have the most

genes in the top quintile of expression and the fewest genes in the

bottom quintile, while Chr V and Chr X have the fewest genes in

the top quintile, and Chr V has the most

genes in the bottom quintile (Supple-

mental Fig. S6A). Notably, Chr I and Chr

III are especially enriched for genes that

are ubiquitously expressed across worm

stages and tissue types (Supplemental Fig.

S6B,C) and for essential genes (Kamath

et al. 2003).

We conclude, based on comparative

analysis of histone marks and chromatin

factors, that C. elegans chromosomes are

organized into broad domains that dif-

ferentiate the center of the chromosomes

from the arms. Nuclear envelope associ-

ation and the presence of repressive

marks are the major features of the arms.

In addition, the X chromosome exhibits

specialized architecture, likely related to

dosage compensation, which is discussed

below.

Distinct dosage compensation and
repressive histone marks on the X
chromosome

In addition to the broad chromatin do-

mains, a striking feature observed in the

whole-chromosome views is the X-chro-

mosome enrichment of factors in Group

C, containing the dosage compensation

proteins (Fig. 2). The C. elegans dosage

compensation complex is loaded onto the

X chromosomes at the 30–40-cell stage of

embryogenesis to down-regulate gene ex-

pression from the two X chromosomes in

hermaphrodite somatic cells by about half, to match gene expres-

sion levels from the single X chromosome in males (Meyer 2005).

To complement the whole-chromosome view, we compared the

enrichment profiles of dosage compensation factors and histone

marks on X-linked genes versus autosomal genes, to identify pos-

sible associations between marks and X-chromosome repression

(Fig. 4; Supplemental Fig. S2). The dosage compensation compo-

nents DPY-26, DPY-27, and MIX-1 illustrate the already docu-

mented enrichment on X-linked genes, both in the high- and low-

expression categories, relative to autosomal genes. Almost all

histone marks show at least a subtle X versus autosome difference

that is consistent with repression of genes on the X, with marks of

activity often more enriched on autosomal genes and marks of

repression more enriched on X-chromosome genes. Two marks,

H4K20me1 and H3K27me1, show a profound difference between

X and autosomal genes.

H4K20me1 is more enriched on the transcribed regions of

highly expressed X-linked genes compared to those on autosomes

(Fig. 4). In L3s, enrichment of H4K20me1 is elevated compared to

embryos and is even observed across silent genes. H3K27me1 sig-

nal shows strong enrichment on highly expressed X-linked genes

in early embryos, but much weaker enrichment in L3s (Fig. 4). The

distinct changes in X enrichment of H3K27me1 and H4K20me1

between early embryos and L3s suggest different roles for these

two modifications. It is possible that H3K27me1 enrichment is

related to germline repression of the X chromosomes (Reinke

et al. 2004), as features of germline chromatin persist into early

Figure 3. H3K9 methylation is enriched on chromosome arms, especially the arms with the pairing
center. (A, red lines) Meiotic pairing center motif coordinates, obtained from a motif scan analysis
(Phillips et al. 2009). On autosomes, >90% of these motifs lie within the pairing center regions, as do
;65% of those on the X chromosome. (Below, black lines) Regions enriched in H3K9 methylation. (B)
Average H3K9me1/2/3 signals around all pairing center motifs are shown in early embryo (EE) and L3
larvae (L3). (C ) Approximate coordinates of chromosome arms and central regions as determined from
enrichment of H3K9 methylation. The boundaries between chromosome arms and centers were de-
termined by visual inspection, as the approximate midpoint of the transition region from high to low
H3K9me enrichment (Supplemental Fig. S4).
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embryos (Rechtsteiner et al. 2010). On the other hand, H4K20me1

may be related to somatic dosage compensation, which starts in

early embryos and is fully established in L3s. H4K20me1 has been

implicated in gene repression in Drosophila and human cells and is

known to be associated with X inactivation in mouse cells (Nishioka

et al. 2002; Kohlmaier et al. 2004; Congdon et al. 2010). In humans,

both H3K27me1 and H4K20me1 are found on actively transcribed

regions (Barski et al. 2007). The intriguing possibilities that

X-enriched H4K20me1 and/or H3K27me1 are involved in regulat-

ing X-linked gene expression are currently being explored.

Among the marks of active chromatin, H3K4me3, H3K79me3,

and H3K27ac are similar between X-linked and autosomal genes in

early embryos; relatively small differences exist in L3s. In contrast,

H3K36me3 levels are significantly lower on highly expressed

X-linked than autosomal genes at both stages. Given the associa-

tion between H3K4me3 and RNA Pol II initiation and between

H3K36me3 and RNA Pol II elongation, one possibility is that high

H3K4me3 and low H3K36me3 on X genes in early embryos reflects

efficient RNA Pol II initiation but failure to elongate. However,

RNA Pol II profiles do not support the

notion of paused RNA Pol II preferentially

on X-linked genes (Supplemental Fig.

S2). In-depth analysis in early embryos

suggests instead that low H3K36me3 on

X-linked genes reflects the distributions

and activities of the two H3K36 histone

methyltransferases, MES-4 and MET-1

(Rechtsteiner et al. 2010). MES-4, which

can catalyze H3K36 methylation inde-

pendently of RNA Pol II, associates pref-

erentially with autosomal genes (Bender

et al. 2006; Rechtsteiner et al. 2010).

MET-1, which is presumed to depend on

RNA Pol II like other H3K36 histone

methyltransferases, can methylate genes

on the X but is present at low levels in

early embryos (Furuhashi et al. 2010;

Rechtsteiner et al. 2010). The elevated

H3K36me3 on highly expressed autoso-

mal genes in L3s has not been similarly

investigated, but may also be due to the

autosome-concentrated activity of MES-4.

In summary, comparison of the X

chromosome to the autosomes high-

lighted previously known features asso-

ciated with dosage compensation and

additionally points to potential roles for

new features, such as H4K20me1, in dif-

ferential regulation of genes on the X

relative to autosomal genes.

Histone marks on genes with different
temporal–spatial patterns
of expression

The above analyses explored differences in

histone mark distributions by stage (early

embryo and L3 larvae), chromosome (the

five autosomes and the X), and expression

level (top and bottom 10% of RNA accu-

mulation). To investigate histone marks

on genes expressed in different tissues, we

categorized genes based on temporal and spatial expression data

(Meissner et al. 2009; Wang et al. 2009; Rechtsteiner et al. 2010)

(Methods). ‘‘Ubiquitous genes’’ (2580 in total) are expressed across

different stages and tissues, whereas ‘‘silent genes’’ (415) include

serpentine receptors that are not expressed in most stages and tis-

sue types. These sets of genes are expected to be regulated simi-

larly across cell types. We also examined two sets of genes that

have spatially different expression: ‘‘germline-specific genes’’ (169)

are expressed in the adult germline but not in isolated muscle, nerve,

and intestine, while ‘‘soma-specific genes’’ (323) are expressed in

isolated muscle, nerve, or intestinal tissue, but not in the adult

germline. Since we are not yet able to ChIP from individual tissues,

we reasoned that analysis of the patterns of histone modifications

on genes expressed in a tissue-specific manner would likely be in-

formative.

Ubiquitous genes generally show the highest levels of active

chromatin marks and the lowest levels of repressive marks, in both

early embryos and L3s, while silent genes generally show the re-

ciprocal pattern (Fig. 5). Germline-specific and soma-specific genes

Figure 4. Profiles of factors on X-linked and autosomal genes in the top and bottom expression bins.
Average signal profiles in the 2 kb around transcript start sites (TSS) and transcript termination sites
(TTS) are shown for selected factors (see Supplemental Fig. S2 for complete set) on four groups of
genes: autosomal genes in the top 10% and bottom 10% of expression and X-linked genes in the top
10% and bottom 10% of expression. The top two rows are marks associated with active gene ex-
pression; the next two rows are marks associated with repression; the bottom row is components in-
volved in dosage compensation.
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generally have levels of active and repressive marks intermediate

between the levels on ubiquitous and silent genes, possibly

reflecting the fact that they are regulated differently in different

tissues and that only a fraction of the cells in the extracts con-

tribute to signal. A clear exception is H3K27me1, which is higher

on both soma and germline genes than on ubiquitously expressed

or inactive genes in early embryos and L3s (Fig. 5). This might

indicate a role for H3K27me1 in tissue-specific gene expression.

Also of note is that the H3K27me1 enrichment pattern groups with

repressive marks in early embryos and with active marks in L3s

(Fig. 1).

The relative enrichment patterns of particular histone marks

on germline-specific and soma-specific genes show interesting

trends (Fig. 5). In early embryos, germline-specific genes are not

being actively transcribed, while transcription of soma-specific

genes is being newly activated (Baugh et al. 2003). Consistent with

that, marks associated with ongoing gene expression, including

RNA Pol II, H3K4me3, and H3K79me3, are higher on soma-specific

genes than germline-specific genes. But surprisingly, the active

mark H3K36me3 is significantly higher on germline-specific genes

than soma-specific genes. As noted above, in-depth comparative

analysis has revealed that H3K36me3 marks are propagated on

germline-specific genes by the MES-4 histone methyltransferase in

the absence of ongoing transcription (Furuhashi et al. 2010;

Rechtsteiner et al. 2010). Consistent with the notion that germline-

specific genes retain at least one mark of active chromatin

(H3K36me3) in early embryos, these genes

have very low levels of the repressive mark

H3K27me3.

In L3s, germline- and soma-specific

genes show very similar levels of enrich-

ment for most marks analyzed (Fig. 5).

This is consistent with L3s containing ac-

tively transcribing germline and somatic

tissues and generating histone modifica-

tions mainly in conjunction with ongoing

gene expression and with common reg-

ulation of chromosome organization. The

notable exception is H3K79me3, which

in both L3s and early embryos is signifi-

cantly higher on soma-specific genes than

germline-specific genes. We hypothesize

that the histone methyltransferase(s) re-

sponsible for H3K79 methylation might be

differently regulated in the germline and

soma.

Conclusion

C. elegans is a powerful model system for

studying genome and chromatin organi-

zation, as well as understanding gene

regulation in biological processes and

diseases. As part of the modENCODE Con-

sortium, we present a comparative map

of histone modifications and chromatin

factors across different chromosomes,

gene sets, and developmental stages. Our

study yielded many unexpected obser-

vations, the most striking being the orga-

nization of C. elegans chromosomes into

broad chromatin domains. This study rep-

resents an initial analysis of this rich data collection. With the data

publicly available to the community, we expect that further analysis

will yield new biological insights and additional surprises.

Methods

Antibodies
The antibodies used in this study are summarized in Supplemen-
tal Table S1. All antibodies against histone modifications were
tested for specificity by Western and/or dot blot analysis (Egelhofer
et al. 2010; http://compbio.med.harvard.edu/antibodies/). For an
antibody to pass Western blot analysis, the histone band in C.
elegans nuclear extract constituted at least 50% of the total nuclear
signal, was at least 10-fold more intense than any other single
nuclear band, and was at least 10-fold more intense than the sig-
nal on recombinant, unmodified histone. For an antibody to pass
dot blot analysis required that at least 75% of the total signal be
specific to the cognate peptide. Mouse monoclonal antibodies
against H3K9me2 (clone 6D11), H3K9me3 (clone 2F3), H3K27me3
(clone1E7), H3K36me2 (2C3), and H3K36me3 (13C9) were gifts
from Hiroshi Kimura (Osaka University) (Kimura et al. 2008).
Other antibodies against histone modifications are available com-
mercially: mouse monoclonal antibodies against H3K4me2 (Wako
308-34809), H3K4me3 (Wako 305-34819), H3K27ac (Wako
306-34949), and rabbit polyclonal antibodies against H3K4me1
(Abcam ab8895), H3K4me3 (LP Bio AR-0169), H3K9me1 (Abcam

Figure 5. Profiles of factors on genes with different spatial–temporal expression. Average signal
profiles in the 2 kb around transcript start sites (TSS) and transcript termination sites (TTS) are shown for
selected factors on four categories of genes: ubiquitously expressed genes, silent genes (genes
encoding serpentine receptors), genes expressed specifically in somatic tissues, and genes expressed
specifically in the maternal adult germline. The top two rows are marks associated with active gene
expression; the bottom two rows are marks associated with repression.
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ab9045), H3K27ac (Abcam ab4729), H3K27me1 (Upstate 07-448),
H3K36me1 (Abcam ab9048), H3K79me1 (Abcam 2886), H3K79me2
(Abcam 3594), H3K79me3 (Abcam ab2621), H4K8ac (Abcam
ab15823), H4K16ac (Millipore 07-329), H4 tetra-ac (LP Bio
AR-0109), and H4K20me1 (Abcam ab9051). Antibodies against
chromatin-associated proteins include RNA Pol II (Abcam ab0817),
LEM-2 (SDI SDQ3891) (Ikegami et al., unpubl.), MES-4 (SDI
SDQ0791) (Rechtsteiner et al. 2010), SDC-3 and DPY-27 (Ercan
et al. 2007), DPY-26 and MIX-1 (Ercan et al. 2009), and HTZ-1
(Whittle et al. 2008). DPY-28 antibody was kindly provided by
Kirsten Hagstrom.

Preparation of extracts and ChIP experiments

Extracts were prepared from N2 (wild-type) embryos and L3 larvae
as described previously: early embryo (EE) extracts (Rechtsteiner
et al. 2010), mixed embryo (MxE) extracts (Ercan et al. 2007), and
L3 extracts (Kolasinska-Zwierz et al. 2009). Eight different matched
EE extracts (containing an average of 37% <28-cell embryos, 30%
28–100-cell embryos, and 33% ;100–300-cell embryos), seven
different matched MxE extracts, and four different matched L3
extracts were prepared. Each ChIP experiment was done in at least
two different extracts. ChIP experiments performed in this study
are summarized in Supplemental Table S1. ChIP experiments were
done and samples amplified using Ligation-Mediated PCR (LM-
PCR) as previously described: EE ChIPs (Rechtsteiner et al. 2010);
MxE ChIPs for SDC-3, DPY-27, and LEM-2 (Ercan et al. 2007); DPY-
26, DPY-28, and MIX-1 (Ercan et al. 2009); HTZ-1 (Whittle et al.
2008); and L3 ChIPs (Kolasinska-Zwierz et al. 2009).

ChIP-chip microarray processing

The detection platform was NimbleGen Custom 2.1M Tiling ar-
rays, with 50-mer probes, tiled every 50 bp for the WS170 (ce4)
genome build, providing even and almost gap-free coverage across
the whole C. elegans genome. Amplified samples were labeled,
hybridized, and scanned at the Roche NimbleGen Research and
Development Laboratory. Most ChIP samples were labeled with
Cy5 and their input reference with Cy3 following the methods
described in Selzer et al. (2005). Compared to ChIP-seq, ChIP-chip
offers faster sample processing time and more accurate fold en-
richment estimate, although less detection sensitivity and lower
resolution.

ChIP-chip analysis

Accession numbers for all ChIP-chip experiments are in Supple-
mental Table S1. Supplemental material is available online at
http://www.genome.org. ChIP-chip data were analyzed by MA2C
algorithm (Song et al. 2007). First, probes were grouped based on
their GC content, then the log2 ratios of probes between ChIP and
input control within each group were normalized to a standard
normal distribution using a robust mean variance method. A win-
dow sliding process was conducted across the whole genome, and
the MA2C score was calculated as the median normalized log2 ratio
among all probes in all replicates within a 600-bp window. All the
experiments reported here were verified by at least two replicates
performed from different chromatin extracts with a replicate cor-
relation >0.6 across the genome. One exception was H4K20me1,
which had a correlation of 0.58 between early embryo replicates,
due to low signals of H4K20me1 in EE and its restriction to Chr X;
replicates of H4K20me1 in EE did show consistent peaks and
troughs in the Genome Browser (Supplemental Fig. S1). The other
exception was DPY-28, which had a correlation of 0.40. Its repli-
cates were obtained from microarrays with different designs and

had a dye swap, but displayed similar peaks of enrichment, espe-
cially on Chr X (data not shown).

Cluster and heatmap analyses

Groups of ChIP factors with similar genome-wide signals (Fig. 1)
were determined using the hclust (complete linkage) function in R,
with pairwise correlation coefficients (calculated using the cor
[Pearson] function) as the similarity measure (The R Development
Core Team 2009). Correlation coefficients were calculated using
median values over 1-kb windows. Repeat density was calculated
from all repeat annotations, including simple repeats, tandem re-
peats, and various types of transposable elements, from WormBase
WS187 (lifted over to WS170). Repeat density and gene density,
obtained from WormBase WS170 (coding genes only), were square-
root-transformed, then normalized to a standard normal distribution.
RNA-seq data for early embryo and L3, obtained from the Waterston
lab via the modENCODE DCC (http://intermine.modencode.org/
release-18/objectDetails.do?id=246001841 and id=246001910),
were logarithm-transformed and then standardized to Z-scores.
MA2C scores were used for all ChIP-chip data. The same median
normalized data were used for the chromosome-wide heatmap
display of ChIP-chip data, repeat density, gene density, and RNA-seq
(Fig. 2).

H3K9me regions and arm boundary determination

One-kilobase windows were called as enriched for H3K9 methyl-
ation if their median me1, me2, or me3 value was over one stan-
dard deviation above the genome-wide mean. The boundaries
between chromosome arms and centers were determined by visual
inspection, as the approximate midpoint of the transition region
from high to low H3K9me enrichment (Supplemental Fig. S4).

Aggregate gene profile plots

Aggregate profile plots were generated by aligning genes at their
transcript start site (TSS) and transcript termination site (TTS),
based on WormBase 170. For genes with multiple transcripts, the
longest transcript was chosen. Genomic regions 1 kb upstream to 1
kb downstream from the TSS and TTS were divided into 40 50-bp
bins each. Average MA2C scores of groups of genes were assigned
to each bin as described in CEAS (Shin et al. 2009). Error bars in-
dicate 95% confidence intervals of the mean of all the probe values
in the respective bin. Profiles around pairing center motifs were
obtained similarly.

Definition of gene sets with different spatial–temporal
expression patterns

Gene classes were defined based on expression data, as described
previously (Rechtsteiner et al. 2010). In brief, ‘‘ubiquitous’’ or
housekeeping genes have transcripts (at least 1 tag) present in
muscle, gut, neuron, and adult germline SAGE (Serial Analysis of
Gene Expression) data sets (Meissner et al. 2009; Wang et al. 2009).
‘‘Silent’’ serpentine receptor genes are expressed in only a few ma-
ture neurons (Kolasinska-Zwierz et al. 2009). ‘‘Germline-specific’’
genes are expressed exclusively in the maternal germline, as their
transcripts are present in the germline (Reinke et al. 2004; Wang
et al. 2009), maternally loaded into embryos (Baugh et al. 2003),
and absent from muscle, gut, and neuron SAGE data sets (Meissner
et al. 2009). ‘‘Soma-specific’’ genes are expressed in muscle, gut, and
neuron SAGE data sets (Meissner et al. 2009) but not in the adult
germline (Reinke et al. 2004; Wang et al. 2009).
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Transcriptional profiling

RNA was isolated from four early embryo and four L3 preparations
used for ChIP, using Trizol and purified using the RNeasy kit
(QIAGEN, catalog 74104). Samples were analyzed on an Agilent
Bioanalyzer to ensure that rRNAs were not degraded and that RNA
was free of protein and DNA contamination. Some samples were
treated with DNase for 30 min at room temperature. Twenty mi-
crograms mg of each RNA was hybridized to a single-color 4-plex
NimbleGen expression array with 72,000 probes (three 60-mer
oligo probes per gene). Quantile normalization (Bolstad et al. 2003)
and the Robust Multichip Average (RMA) algorithm (Irizarry et al.
2003) were used to normalize and summarize the multiple probe
values per gene to obtain one expression value per gene and
sample. The expression values per gene were averaged across the
four samples.
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