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Abstract

During animal development, a complex of Par3, Par6 and atypical protein kinase C (aPKC) plays a central role in cell polarisation. The small G
protein Cdc42 also functions in cell polarity and has been shown in some cases to act by regulating the Par3 complex. However, it is not yet
known whether Cdc42 and the Par3 complex widely function together in development or whether they have independent functions. For example,
many studies have implicated Cdc42 in cell migrations, but the Par3 complex has only been little studied, with conflicting results. Here we
examine the requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in a range of different developmental events. We found similar
requirements in all tissues examined, including polarised growth of vulval precursors and seam cells, migrations of neuroblasts and axons, and the
development of the somatic gonad. We also propose a novel role for primordial germ cells in mediating coalescence of the Caenorhabditis elegans
gonad. These results indicate that CDC-42 and the PAR-3/PAR-6/aPKC complex function together in diverse cell types.

© 2007 Elsevier Inc. All rights reserved.
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Introduction

A conserved complex of Par3 and Par6 (PDZ domain
proteins) and an atypical protein kinase C (aPKC) plays a
central role in the establishment and maintenance of cell
polarity in animal cells (Macara, 2004). In some systems, this
complex has been shown to be activated by the small GTPase
Cdc42 (Etienne-Manneville, 2004). In mammalian epithelia
Cdc42 and the Par3 complex are required for apical—basal
polarity and junction formation (Joberty et al., 2000; Lin et al.,
2000). In migratory mammalian cells, Cdc42 and a Par-6/aPKC
complex mediate polarisation of the microtubule organising
centre towards the leading edge (Etienne-Manneville and Hall,
2001; Solecki et al., 2004). In Caenorhabditis elegans, CDC-42
and the PAR-3/PAR-6/PKC-3 complex regulate polarity in the
one celled embryo (Nance, 2005).

Although there are examples where Cdc42 and the Par3
complex are known to function together in cell polarisation, the
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picture regarding other processes is not clear. For example,
Cdc42 has been widely implicated in cell migration, but com-
ponents of the Par3 complex have been little studied. Further-
more some studies have given conflicting results. Fibroblasts
generated from Cdc42 null ES cells show no migration defects
(Czuchra et al., 2005), whereas primary fibroblasts from
conditional Cdc42 knockout mice show strong defects in
wound recruitment and chemotaxis (Yang et al., 2006).
Overexpression of mPar6a prevents the migration of glial
guided neurons in culture (Solecki et al., 2004). Axon
outgrowth, which precedes cell body migration, is also
inhibited and might be the cause of the migration defect.
Axon outgrowth is also blocked by Par3 complex over-
expression in hippocampal neuron cultures (Shi et al., 2003),
but evidence from Drosophila mutants suggests that the
complex is not required for axon outgrowth or dendrite
morphology (Rolls and Doe, 2004). By contrast Par6 and Par3
(Bazooka) are required for the migration of Drosophila border
cells (Pinheiro and Montell, 2004), although earlier experi-
ments suggest that Cdc42 is not required for this process
(Murphy and Montell, 1996). Thus the role of the Par3
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complex in migration and polarised growth, and its relationship
to Cdc42 are unclear.

To address this question, we investigated whether CDC-42
and the PAR-3 complex act in the same set of developmental
processes in C. elegans. We found that inhibition of CDC-42 or
components of the PAR-3/PAR-6/PKC-3 complex causes
similar defects in multiple cell types, including somatic gonad
precursors, vulval precursors, seam cells and neurons. We
suggest that CDC-42 and the PAR-3 complex widely act
together in cell migration and polarised cell growth.

Materials and methods
Strains and worm handling

Standard methods have been used for culturing C. elegans on NGM plates
(Lewis and Fleming, 1995). Bristol strain N2 (Brenner, 1974) has been used as
wild type throughout. The ehn-34::GFP reporter (pRA230) contains 3003 bp
upstream of the e/in-34 translational start and the first two exons of ehn-34.
Genomic sequences were cloned into pPD95.75 using Xbal and Pstl sites.
pRA230 was injected with pRF4 (Mello et al., 1991) and integrated to generate
rdls2 [ehn-3A::GFP; rol-6(sul006)] V.

Other strains used were bnlsi[pie-1::GFP::pgl-1; unc-119(+)] I, let-23(sy1)
1L, syls77 [zmp-1::YFP] 11, muls32[mec-7::GFP, lin-15(+)] 11, cdc-42(gk388)/
miInl[mlsi4 dpy-10(el28)] 11, lin-12(n302) 111, lin-12(n137) dpy-19(el1259)/lin-
12(n137n720) unc-32(e189) 11, lin-12(n941) N/hT2[qls48] (I; 1), jclsi [ajm-
1::GFP; rol-6(sul006)] 1V, lin-3(n378) 1V, lin-45(n2018) 1V, syls49[zmp-1::
GFP; dpy-20(+)] 1V, syls67 [zmp-1::CFP; unc-119(+)] V, syls59[egl-17::CFP]
X, zuls77[par-6::GFP; unc-119(+)], mcls[let-413::GFP; rol-6(sul006)],
arls51[cdh-3::GFP; dpy-20(+)], syEx[lin-3::GFP; pha-1(+)], qls56[lag-2::
GFP; unc-119(+)], arls92[egl-17p.::CFP::lacZ; unc-4(+); ttx-3p::GFP] and
arls82[lin-12::GFP; unc-4(+), egl-17p::lac-Z]. For compound microscopy,
live specimens were mounted by standard procedures (Sulston and Hodgkin,
1988) on 3% agar pads in 5 mM tetramisole in M9. Photomicrographs were
generated as described under Immunofluorescence.

RNAi

RNAi was performed by feeding as described previously (Kamath et al.,
2001), with minor modifications. Briefly, plates containing NGM agar, | mM
IPTG and 25 pg/ml carbenicillin were inoculated with bacterial cultures grown
overnight at 37 °C in LB medium supplemented with 50 pg/ml ampicillin.
Synchronised L4 animals were placed on plates at 15 °C for 48 h for cdc-42,
par-3 and pkc-3(RNAi), 24 h for par-6(RNAi), and 40 h at 25 °C for mes-1
(RNAi). Longer incubations (72 h) result in 100% embryonic lethality for cdc-42
or the par-3 complex. After the first incubation adults were transferred to fresh
plates and allowed to lay eggs for 24 h at 20 °C before removal. Progeny were
incubated at 20 °C until they reached the required stage for analysis. Constructs
used for RNAI are as previously described (Kamath et al., 2003). These clones
are predicted to show no off-target effects (no primary or secondary off-targets in
Wormbase, www.wormbase.org).

Vulval assays

The Muv phenotype was scored under a dissecting microscope. Vulval
induction was scored at L4 as previously described (Poulin et al., 2005). 1° fate
was scored on the basis of egl-17::CFP expression at the Pn.pxx stage.

Immunofluorescence

Fixation for AIM-1/MH27 and LIN-12::GFP stainings was carried out using
a modified version of the Finney—Ruvkun fixation procedure (Shaye and
Greenwald, 2002), L1 larval staining and embryo staining was carried out as in
Le Bot et al. (2003) and LIN-12 and egl-17::CFP stainings as in Hurd and
Kemphues (2003). The following antibodies were used: MH27 (Francis and

Waterston, 1985), anti-GFP (Molecular Probes or Nacalai Tesque), anti-Pgl-1
(Kawasaki et al., 1998), NE8/4C6.3 (Goh and Bogaert, 1991), and anti-LIN-12
(gift of Stuart Kim). All conjugated secondary antibodies were from Jackson
Immunoresearch. Stained worms were mounted in Mowiol (Merck) and viewed
with a Zeiss Axioplan 2 microscope. Photomicrographs were obtained using
either a Hamamatsu Orca C4742-95 camera and Improvision Openlab software
or a Zeiss LSM 500 Meta confocal attachment.

Results
cdc-42 and par-3(RNAi) result in hyperinduction of the vulva

Strong maternal reduction of cdc-42, par-3, par-6 or pkc-3
causes defects in the polarity of the first cell division and
embryonic lethality (Gotta et al., 2001; Kemphues et al., 1988;
Tabuse et al., 1998; Watts et al., 1996). Components of the PAR-
3 complex are expressed widely during later development
(Nance, 2005), suggesting additional roles, but such roles show
maternal rescue: homozygous loss of function mutants of par-3
and par-6 grow into morphologically normal adults that give
rise to 100% dead embryos (Kemphues et al., 1988; Watts et al.,
1996) and a cdc-42 null mutant is viable but homozygous sterile
(data not shown). Consistent with this, a previous study using
RNAI to inhibit zygotic but not maternal par-3 function only
identified defects in epithelia that develop in the last larval stage
(Aono et al., 2004). In order to more broadly investigate somatic
functions of these genes we reduced both their maternal and
zygotic activities by carrying out RNAi of mothers for short
periods and looked for phenotypes in their surviving progeny
(see Materials and methods). We found that RNAi of cdc-42,
par-3, par-6 or pkc-3 results in multiple ventral protrusions in
adult progeny, characteristic of a Multiple vulva (Muv)
phenotype (Table 1). For this paper, we focus on defects
induced by RNAi of cdc-42 and use par-3 or par-6 as
representative of the PAR-3/PAR-6/PKC-3 complex, as the
phenotypes induced by RNAi of par-3, par-6 and pkc-3 are
similar.

The C. elegans vulva develops from three of six equipotent
vulval precursor cells (VPCs), numbered P3.p—P8.p, induced
and patterned by the Ras and Notch signalling pathways
(Wang and Sternberg, 2001). A LIN-3/EGF signal produced
by the Anchor Cell in the overlying gonad induces vulval fate
in the three closest VPCs (P5.p—P7.p) by activating Ras
signalling via the EGF receptor LET-23. Lateral signalling
between the VPCs, mediated by LIN-12 Notch, results in the
central cell (usually P6.p) adopting the primary (1°) vulval
fate, while the flanking cells adopt the secondary (2°) fate.
The uninduced P3.p, P4.p, and P8.p cells fuse with the sur-
rounding hypodermis after one division, whereas the induced
VPCs divide three times to produce 22 adult vulval cells.
Counting the number of vulval cells confirmed that RNAi of
cdc-42, par-3, par-6 or pkc-3 results in greater than three
induced VPCs (Table 1).

Although CDC-42 and the PAR-3 complex play conserved
roles in epithelial polarity, the vulval hyperinduction pheno-
types observed following their knockdown do not appear to be
caused by defects in vulval cell polarity. We found that apical,
adherens junction and basal markers are localised to the correct
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Table 1

VPCs are hyperinduced following RNAi of cdc-42, par-3, par-6 or pkc-3

Treatment Length of % Animals % Animals Average induction n % Muv* n
exposure (h) hypo-induced hyper-induced (range)

Vector(RNAi) 48-72 0 0 3.0°(3.0-3.0) 30 0 1793

cde-42(RNAI) 48-72 10 47 3.4%(2.0-5.0) 30 28 1971

par-3(RNAi) 48-72 0 10 3.1°(3.0-5.0) 30 7 188

par-6{RNAI) 24-48 0 10 3.2(3.0-6.0) 30 4 233

pke-3(RNAD) 48-72 0 13 3.1°(3.0-4.5) 30 6 151

mes-1{RNAi) 40-64° n.d. n.d. n.d. n.a. 74 206

cde-42(RNAI) 1 AC 48-72 4 4 3.0°(1.0-4.0) 55 n.d. n.a.

cde-42(RNAI) 2+ AC 48-72 4 80 4.1°(2.0-6.0) 45 n.d. n.a.

Greater than 3 induced VPCs is hyperinduced and fewer than 3 is hypoinduced. Hypoinduction may be a result of gaps between VPCs or abnormal AC positions.

AC: Anchor Cell.
# Muv, multiple protrusions scored using a dissecting microscope.

® The number of VPCs induced (from 0—6) was scored by counting vulval cells at L4.

¢ mes-1(RNAi) incubations were at 25 °C.
4 Previously reported by Capowski et al. (1991).

¢ The number of VPCs induced (from 0-6) was scored by counting vulval cells at L3 Pn.pxx.

domains in hyperinduced vulval cells of cdc-42(RNAi) and par-
3(RNAi) animals (Supplementary Figure 1).

Polarised growth defects of the VPCs and seam cells

Although the apical junctions of individual VPCs are intact,
cdc-42 or par-6(RNAi) results in the occurrence of gaps
between VPCs during L3 (Fig. 1B). VPCs are not born in
contact with one another but elongate during L2 to form a
continuous array (Liu et al., 2005). The finding of large gaps
between VPCs during L3 suggests that CDC-42 and the PAR-3
complex are required for the normal polarised growth of these
cells.

To ask whether a requirement in polarised growth is a
general property of these genes, we examined seam cell
development. The seam cells divide at the beginning of each
larval stage, with the anterior daughters fusing with the
hypodermis, while the posterior daughters retain a seam cell
fate (Sulston and Horvitz, 1977). The continuous array of seam
cells is restored by elongation of the posterior daughters in the
anterior/posterior axis. Following RNAi of cdc-42 or par-6,
many seam cells do not extend to the neighbouring cell,
leading to large gaps between them (Fig. 1D). In addition,
seam cells have a rounded rather than an elongated
morphology consistent with a defect in polarity of growth
(Fig. 1D). Although apical junctions are continuous, they

wild type

appear abnormal, with bright spots of AJM-1::GFP at the
apical membranes (Fig. 1D). Thus CDC-42 and the PAR-3
complex are required for the polarised growth of both VPCs
and seam cells and may play a role in regulating the re-
cruitment of junctional components.

Both AC/VU precursors adopt the Anchor Cell fate

We next explored the basis for the Muv phenotype induced
by RNAI of cdc-42, par-3, par-6, and pkc-3. Because epistasis
analyses showed that CDC-42 acts at or upstream of the LIN-3
signal produced by the Anchor Cell (AC) (Supplementary
Table 1), we examined AC development.

The AC is derived from one of two equipotent cells, Z1.ppp
and Z4.aaa, descendants of the somatic gonad precursors
(SGPs), Z1 and Z4 (Kimble and Hirsh, 1979). Z1.ppp and Z4.
aaa are brought together by the stereotyped division pattern of
the SGPs. Through contact-dependent LIN-12 Notch signalling,
either Z1.ppp or Z4.aaa adopts a ventral uterine (VU) fate, while
the other forms the AC (Seydoux and Greenwald, 1989).
Disruption of this signalling causes both cells to develop as ACs
and can result in changes in vulval fate through excess LIN-3
signalling.

We found that instead of the single AC found in wildtype,
two ACs were often present following RNAi of cdc-42,
par-3, par-6 or pkc-3 (Fig. 2, Table 2). This suggests that

cdo=42(RNAI)
N

cdc-42(RNAJ)
- —'n ‘

Fig. 1. Abnormal VPC and seam cell elongation. (A, B) AJM-1 at the apical junction of Pn.p stage VPCs (brackets). (A) Wild-type: VPCs form a continuous array
(n=31). (B) cdc-42(RNAi) animal with a large gap between VPCs (arrowhead); 39% of cdc-42(RNAi) animals (n=28) and 17% of par-6(RNAi) animals (n=30) have
such gaps. (C, D) AJM-1 at the apical junction of L3 stage seam cells. (C) Wild-type: seam cells form a continuous array (n=31). (D) cdc-42(RNAi) animal with large
gaps (arrowheads) and rounded seam cells; seam cell gaps occur in 86% of cdc-42(RNAi) animals (n=28) and 13% of par-6(RNAi) animals (n=30). Anterior, left;

ventral, down; scale bars, 10 um.
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LIN-12 Notch signalling between AC/VU precursors might
be disrupted. CDC-42 does not appear to be required for
activity of the LIN-12 Notch pathway downstream of LIN-12,
as RNAI of cdc-42 cannot rescue the AC-less phenotype of
weak [lin-12(gf) mutants (lin-12(n302gf) n=186, lin-12
(n137gf)/lin-12(n137n720lf) n=206). This suggests that cdc-

E 1° vulval fate cells n
Single Adjacent Separate
vector (RNAi)' 100% 0% 0% 25

cdc-42(RNAi)' 77% 16% 1% 95
par-3(RNAi)' 85% 15% 0% 13
cdc-42(RNAi) 1 AC*  89% 11% 0% 55
cdc-42(RNAi) 2 AC* 20% 31% 51% 45

42(RNAi) does not cause multiple ACs by downregulating
LIN-12 Notch signal transduction.

However, we observed that the two ACs in cdc-42(RNAi)
animals were frequently separated from one another (Figs. 2C,
D; Table 2). This contrasts with the direct contact of multiple
ACs in lin-12 mutants (Greenwald et al., 1983), suggesting that
RNAIi of cdc-42 might cause ACs or their precursors to
separate, preventing contact-dependent signalling. Indeed, we
found that RNAIi of cdc-42 caused separation of the multiple
ACs in lin-12 mutants (Table 2).

The additional ACs in cdc-42(RNAi) animals appear to be
derived from the normal AC/VU precursors because cdc-42
(RNAi) does not increase the number of ACs in a background
that already has multiple ACs derived from the normal
precursors (lin-12(n941); Table 2). The additional ACs formed
in cdc-42(RNAi) animals also occur in the presence of normal
distal tip cells (data not shown), whose precursors can instead,
in certain mutant backgrounds, give rise to additional ACs
(Miskowski et al., 2001).

AC/VU precursors are separated and gonads are fragmented

To further investigate the basis of AC duplication and
separation, we examined the development of the somatic gonad
in cdc-42(RNAi) and par-3(RNAi) animals. We found that,
whereas wild-type animals have a single gonad, cdc-42(RNAi)
animals often have a gonad split into two separate sections
(23%; n=100), each of which usually contains an AC (91%,
n=23; Fig. 2C). This suggests that the AC/VU precursors
might have been physically separated, preventing them from
signalling to one another and resulting in the formation of two
ACs. Indeed, at the time of signalling between AC/VU
precursors (L2), cdc-42(RNAi) and par-3(RNAi) animals
showed frequent separation of these precursors (Figs. 3B, C;
34%, n=44, 44%, n=16, respectively) whereas separation was
never seen in control animals (7=20). AC duplication occurs
both in animals with split gonads (47%; n=45) and in those
with single, non-split gonads (53%; n=45) suggesting a
requirement for CDC-42 and the PAR-3 complex in somatic
cell positioning within the gonad. We conclude that RNAI
inhibition of CDC-42 or components of the PAR-3 complex
causes separation between the AC/VU precursors, resulting in

Fig. 2. cdc-42(RNAi) results in multiple ACs, adjacent 1° VPC fates and gonad
splitting. Overlays of Nomarski images of L3 Pn.pxx stage animals with
projections of zmp-1::YFP expression (yellow) marking the Anchor Cell (AC)
and egl-17::CFP expression (blue) marking 1° fate VPCs. Brackets indicate the
descendants of induced VPCs and black dotted outlines the morphology of the
gonad. (A) Wild-type with extended gonad (inset), a single AC, and three
induced VPCs, one of which (P6.p) has adopted the 1° fate (marked by egl-17::
CFP). (B-D) cdc-42(RNAi) animals with (B) two touching ACs and a single 1°
fate VPC, (C) two ACs in separate gonad fragments and two, non-adjacent, 1°
fate VPCs, (D) two separated ACs in an intact, but short, gonad and two adjacent
1° fate VPCs. VPCs adjacent to 1° fate VPCs sometimes fail to adopt vulval
fates (arrows in panel D), perhaps because of a gap between the VPCs. Anterior,
left; ventral, down; scale bar, 10 um. (E) Table of 1° vulval fate phenotypes. '1°
fate scored using arls92[egl-17::CFP::lacZ] (Yoo et al., 2004). *1° fate scored
using syls59[egl-17:CFP] (Inoue et al., 2002). AC: Anchor Cell.
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Table 2
Multiple Anchor Cells induced by RNAI of cdc-42, par-3, par-6 or pkc-3
Strain 90 Animals with n % 2+ AC animals with n % 2+ separate n

1 AC 2 AC =2 AC Touching ACs Separate ACs AC ;mm_wals
with split gonad
Vector (RNAQ)® 100 0 0 30 n.a. n.a. n.a. n.a. n.a.
cde-42(RNAi)" b 55 44 1€ 100 16 hES 15 55 38
par-3(RNAi)4 85 15 0 26 50 50 4 n.d. n.a.
par-6(RNAi)* 81 19 0 26 0 100 5 40 5
pke-3(RNAQ)® 79 21 0 29 33 67 6 n.d. n.a.
lin-12(n941)¢ 0 78 22¢ 80 100 0 80 n.d. n.a.
lin-12{n941); 0 87 13¢ 23 78 22 23 n.d. n.a.
cdc-42(RNAi)

mes-1(RNAi)* 62 38 0 26 10 90 10 50 8
hnd-1{g740)* 92 8 0 85 57 43 7 44 9

Split gonads have two distinct fragments of gonadal tissue separate from one another.

# Anchor Cells (AC) scored using syls77 [zmp-1::YFP] (Inoue et al., 2002).

® AC duplication was confirmed with arls51/cdh-3::GFP] (Karp and Greenwald, 2003) and syEx/lin-3::GFP] (Wang and Sternberg, 2000) (data not shown).
¢ Additional ACs are derived from the AC/VU precursors (Z1.ppp and Z4.aaa) and occasionally from their sibling cells (Z1.ppa and Z4.aap) (Seydoux et al., 1990).
4" Anchor Cells scored using syls49 [zmp-1::GFP] (Wang and Sternberg, 2000).

the formation of multiple ACs, presumably by preventing LIN-
12 Notch signalling.

Multiple Anchor Cells and vulval fate changes

To investigate whether the Muv phenotype of cdc-42(RNAi)
is due to the presence of multiple ACs, we recovered cdc-42
(RNAi) animals with either one or two ACs at L3 and then
scored their vulval phenotype at adulthood: 78% (n=27) of 2

vector(RNAI)

cdc-42(RNAI)

Fig. 3. AC/VU precursors are separated. AC/VU precursor cells (filled
arrowheads) and their siblings (unfilled arrowheads) at the L2 stage, visualised
by LIN-12::GFP expression. (A) Wild-type: AC/VU precursors are in contact.
(B) cdc-42(RNAi) and (C) par-3(RNAi) animals with separated AC/VU
precursors. Anterior, left; ventral, down; scale bars, 10 pm.

AC animals were Muv, compared to only 2% (n=100) of 1 AC
animals. Similarly, scoring vulval induction directly showed
that 80% (n=45) of 2 AC animals have extra induced VPCs
compared with only 4% (n=55) of 1 AC animals (Table 1).
These results strongly suggest that the additional ACs induce
hyperinduction of the vulva.

In analyzing vulval hyperinduction in cdc-42(RNAi) and
par-3(RNAi) animals, we observed unusual patterns of vulval
cell fates. In the wild-type and in animals where VPCs are
hyperinduced due to excessive Ras signalling, 1° fate VPCs
never have 1° fate neighbours but are instead flanked by 2°
fate neighbours due to LIN-12 Notch lateral signalling (Wang
and Sternberg, 2001). In contrast, 1° fate cells are often
adjacent to one another in cdc-42(RNAi) or par-3(RNAi)
animals (Figs. 2D,E). These adjacent primary cells both
downregulate LIN-12 (Supplementary Figure 2), as do
normal 1° cells in wildtype animals (Shaye and Greenwald,
2002).

Adjacent 1° fates usually result from a defect in LIN-12
Notch mediated lateral signalling between VPCs. In a lin-12
null mutant all three induced VPCs adopt the 1° fate
(Greenwald et al., 1983). We found that the incidence of
adjacent primary fates in cdc-42(RNAi) animals is related to
the distance between the ACs. Most cdc-42(RNAi) animals
with two touching ACs have only a single 1° fate (71%,
n=7, Fig. 2B), indicating that the presence of two ACs is
not alone sufficient to induce multiple 1° fates. The per-
centage of these cdc-42(RNAi) animals, with touching ACs,
showing adjacent 1° fates (29%, n=7) is similar to the
percentage having gaps between VPCs (39%; n=28). Because
LIN-12/Notch signalling is largely contact dependent (Green-
wald, 2005), the presence of a gap between VPCs would be
expected to prevent lateral signalling and lead to adjacent 1°
fates. Gaps between VPCs could also explain the observation
of adjacent 1° fates in 11% (n=55) of 1 AC cdc-42(RNAi)
animals. Where two ACs are separated by more than one
VPC width (21 pm, n=55), then most animals display
multiple, non-adjacent 1° fates (84%, n=24, Fig. 2C).
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However, we observed a different phenotype in animals
where the two ACs are not touching but are separated by less
than the width of a VPC. Most of these animals have adjacent 1°
fates (89%, n=9, Fig. 2D), a rate more than double that of VPC
gaps. This result suggests that when neighbouring VPCs each
underlie an AC, the AC signal might override lateral signalling
between the VPCs.

Multiple ACs result from disruption of the L1 gonad
primordium

To understand the cause of the somatic gonad cell position
defects, we examined earlier stages of gonad development. At
hatching the gonad primordium is composed of a linear array of
four cells, with two SGPs at the poles and two central primordial
germ cells (PGCs) (Kimble and Hirsh, 1979). During
embryogenesis the SGPs migrate from their anterior birth
positions to the PGCs in the posterior region (Sulston et al.,
1983).

We found that the L1 gonad primordium was disrupted in
55% (n=49) of cdc-42(RNAi) and 38% (n=60) of par-6
(RNAi) animals (Figs. 4A-E and H). Three different defects
were seen: 1) disorganised primordia, with one of the SGPs
in a central rather than polar position (Figs. 4C, D); 5/5 cdc-
42(RNAi) animals of this type developed a single gonad and
one had two ACs. 2) separated primordia, with each SGP
independently associated with one or more PGCs (Fig. 4B);
2/2 cdc-42(RNAi) animals of this type developed split gonads
and 2 ACs. 3) SGPs with no associated PGCs (Fig. 4E); 8/8
cdc-42(RNAi) animals of this type had two ACs. This PGC-
less phenotype was the most frequent (Fig. 4H) and
associated with SGP separation in 77% (n=13) of such
animals. cdc-42(RNAi) animals with a normally organised L1

D.P. Welchman et al. / Developmental Biology 305 (2007) 347-357

primordium developed intact gonads (18/18) and only a
single AC (17/18), suggesting that CDC-42 is no longer
required to maintain gonad integrity subsequent to hatching.
These results show that cdc-42 and par-6 are required for
proper cell positions within the four cell gonad primordium.
In addition, reduction of their function leads to the absence
of PGCs.

Loss of PGCs is due to mis-segregation of P-granules during
embryogenesis

What is the cause of the striking absence of PGCs at L1
following RNAi of cdc-42 or par-6? During normal deve-
lopment the germ-line P-granules are segregated into the
germline precursor P4, which divides to give rise to the
PGCs, Z2 and Z3 (Strome and Wood, 1982). In contrast to
control animals, where P-granules are found in only the two
normal PGCs (n=67, Fig. 5A), 55% (n=44) of cdc-42(RNAi)
animals contain P-granules in multiple cells that were sepa-
rated from the SGPs (Fig. 5B). These abnormal PGL-1
positive cells coincided with body wall muscles in all cases
(n=13, Fig. 5B).

The presence of P-granules in body wall muscles is
reminiscent of mutations in mes-/, wherein P-granules are
mis-segregated into the germline precursor P4 and its muscle
precursor sibling D during the division of P3, usually resulting
in both cells adopting a D-like muscle fate and the correspond-
ing loss of PGCs (Strome et al., 1995). Studies of the early
embryonic roles of CDC-42 and the PAR-3 complex have
shown earlier mis-segregation of P-granules between the
germline and somatic lineages (Gotta et al., 2001; Kemphues
et al., 1988; Tabuse et al., 1998; Watts et al., 1996). Under our
RNAI conditions, P-granules also mis-segregate between D and

mes-1(RNAI)

>

H Gonad primordium SGP protrusions
Normal Disorganised Separated  Missing PGCs  n Short Long n
vector (RNAI) 100% 0% 0% 0% 35 n.a. n.a. n.a.
cdc-42(RNAI) 45% 20% 8% 27% 49 31% 61% 26
par-6(RNAi) 62% 3% 2% 33% 60 18% 26% 39
mes-1(RNAi) 67% 0% 0% 33% 61 5% 0 40

Fig. 4. Abnormal SGP positions, gonad splitting and loss of PGCs. (A—E) SGPs (green) marked by e/in-34::GFP over Nomarski images of L1 gonad primordia;
arrowheads mark PGCs, dotted outlines mark the primordium. (A) Wild-type primordium has polar SGPs and central PGCs. (B) cdc-42(RNAi) animal with two
separate primordia (C) cdc-42(RNAi) or (D) par-6(RNAi) animals with disorganised single primordia. (E) cdc-42(RNAi) animal with SGPs lacking associated
PGCs. (E’—G) Projections of ehn-34::GFP expression in SGPs. In (E’) cdc-42(RNAi) or (F) par-6(RNAi) animals lacking PGCs, SGPs extend long processes. (G)
in mes-1(RNAi) animals lacking PGCs, processes are absent. Anterior, left; ventral, down; scale bar, 10 um. (H) Table of gonad primordium phenotypes.
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wild type| B cdc-42(RNAI)

cdc-42(RNAI)

D

P4\‘

cdc-42(RNAI)

Fig. 5. Germ cells adopt muscle fates and are not associated with SGPs in cdc-42
(RNAi) animals. SGPs (ehn-3A::GFP, green), P-granules (anti-PGL-1 (Kawasaki
et al., 1998), red in panels A, B, E, F, white in panels C, D), and body wall
muscles (NE8/4C6.3 marker (Goh and Bogaert, 1991), blue). (A) Wild-type L1
gonad primordium with polar SGPs (asterisks) and central PGCs (unfilled
arrowheads) (B) cdc-42(RNAi) L1 animal with P-granules (red, brackets) in
muscle cells (blue), and SGPs (green) lacking associated PGCs (no P-granule
containing cells). (C) Wild-type embryo after the division of P3, the P granule
marker pgl-1::GFP (Cheeks etal., 2004) is only in the germline precursor P4. (D)
cdc-42(RNAi) embryo with P-granules in both P4 and its sibling D. (E) Wild-type
3-fold embryo; SGPs are associated with PGCs (F) cdc-42(RNAi) embryo; SGPs
extend processes that appear to be directed towards the PGL-1 staining cells
(filled arrowheads). Anterior, left; scale bar, 10 um.

P4 following cdc-42(RNAi) (Fig. 5C, D) and are found in body
wall muscles later in embryogenesis (Fig. 5F).

In cdc-42(RNAi) embryos lacking PGCs, the SGPs are found
in the posterior of the embryo but are usually separated from
one another (Fig. 5F). This separation and lack of association
with PGCs presumably leads to the formation of independent
gonad primordia, each containing one of the SGPs (but no
PGCs).

Gonad development in the absence of PGCs

To ask whether CDC-42 and the PAR complex have roles
in gonad development independent of their roles in PGC
formation, we compared their RNAi phenotypes to those of
mes-1(RNAi) animals, which also lack PGCs but should not
disrupt CDC-42 or the PAR-3 complex. Similar to cdc-42
(RNAi) and par-6(RNAi) animals, we found that mes-1(RNAi)
animals often have two ACs and split gonads, and become
Muv adults (Tables 1 and 2). However, unlike cdc-42(RNAi)
or par-6(RNAi) animals, neither abnormal cell positions in
single primordia nor separated primordia containing both
SGPs and PGCs were seen in mes-1(RNAi) animals. These
account for 51% of affected cdc-42(RNAi) and 13% of
affected par-6(RNAi) animals. Therefore cdc-42 and par-6 are
required for normal SGP cell positions and/or coalescence of
the gonad.

We also observed that SGPs in cdc-42(RNAi) and par-6
(RNAi) L1 animals extend long protrusions when they are not
associated with PGCs (Figs. 4E’, F, H). In contrast, protrusions
were not seen in mes-1(RNAi) animals lacking PGCs (Figs.
4G, H). Abnormal SGP protrusions were also observed in cdc-
42(RNAi) embryos lacking PGCs (4/5 embryos after the one-
fold stage) (Fig. S5F). Interestingly, these protrusions appear to
be directed towards the abnormal P-granule containing muscle
cells (3/4). These observations suggest that the PGCs might
normally provide a cue for positioning the SGPs and that the
P-granule containing muscle cells still provide this cue. Since
the SGPs in mes-1(RNAi) animals that lack PGCs do not
extend long processes, it seems likely that their formation in
cdc-42(RNAi) and par-6(RNAi) animals is not the result of
loss of the PGCs, but of a separate effect upon cell
architecture.

The separation between SGPs observed in the absence of
PGCs suggests that PGCs may play an attractive role during
normal coalescence of the gonad. However, previous studies
that eliminated PGCs by ablating the PGC precursor P4 did not
cause SGP separation: the SGPs generated a single small, but
normal, somatic gonad (Junkersdorf and Schierenberg, 1992;
Sulston et al., 1983). One explanation for the normal
coalescence of SGPs following P4 ablation is that the corpse
of P4 might provide an attractive cue. Consistent with this
possibility, following ablation of P4 we observed that its corpse
was clearly associated with the L1 gonad primordium in 5/8
individuals (Supplementary Figure 3). We hypothesise that the
PGCs provide an attractive cue that aids in the final steps of
gonad coalescence.

O cell and axon migration defects

Numerous studies have implicated Cdc42 in regulating cell
migrations. Whether or not this cell migration role involves the
PAR-3 complex has been little studied. In order to investigate
whether CDC-42 and the PAR-3 complex act together during
cell migrations in C. elegans, we asked whether RNAi of
cdc-42, par-3 or par-6 affected migration of neurons and
axons. We used the marker mec-7::GFP (Ch’ng et al., 2003)
to visualise the descendants of the migratory Q neuroblasts
during L4. In the wild type, QR migrates anteriorly and QL
posteriorly during L1. At L4 the descendants of these cells
QR.paa (AVM) and QL.paa (PVM) have distinctive anterior
and posterior positions respectively and both express mec-7.:
GFP. In 21% of cdc-42(RNAi) and 5% of par-3(RNAi)
animals, AVM failed to complete migration and was posterior
to its normal location (Figs. 6B, E, F). In addition, 12% of
cdc-42(RNAi) and 21% of par-3(RNAi) animals displayed
axon migration and/or branching defects in ALM, PLM or A/
PVM neurons (Figs. 6D, E). We also observed axon migration
and/or branching defects of ALM and PLM neurons in 12% of
par-6(RNAi) animals (Fig. 6F). These phenotypes are unlikely
to be a consequence of gonad abnormalities as they are not
displayed by mes-1(RNAi) animals (Fig. 6F). These results
show that CDC-42 and the PAR-3 complex are required for
neuroblast and axon migration.
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Discussion

CDC-42 and the conserved PAR-3/PAR-6/aPKC complex
were previously shown to function together in establishing cell
polarity in a variety of cell types (Etienne-Manneville, 2004;
Etienne-Manneville and Hall, 2003b). Here, we show that a
range of different polarised growth and cell migration processes
show similar requirements for CDC-42 and the PAR-3 complex.
We also demonstrate multiple roles for these proteins in

wild type

PLM axon

-
cdc-42(RNAI)

_' - Pvm axon

PVM
PLM axon s 1

F Q cell migrations
Miiv AVM Axon
Normal , Defects?

defect

no RNAi 0% 99%% 1% 2% 246

cdc-42(RNAi) 21%  79% 21% 12% 119

par-3(RNAi) 7% 95% 5% 21% 101

par-6(RNAi) 4% 96% 1% 12% 166

mes-1(RNAi) 12%  100% 0% 0% 68

formation of the C. elegans gonad. Our results suggest that
these proteins are likely to act together widely in cell migration
and polarised cell growth in animals.

CDC-42 and the PAR-3/PAR-6/PKC-3 complex act together
broadly to regulate cell migration and polarised growth in
C. elegans

When cdc-42, par-3 or par-6 are knocked down the
migration, polarised growth or positioning of several cell
types is perturbed. Abnormal elongation of the VPCs and seam
cells results in gaps between cells, and seam cells have a
rounded rather than an elongated morphology. In ALM, PLM,
and A/PVM neurons, axon migration is abnormal and PVYM
neuroblast migration is incomplete. Somatic gonad precursors
(SGPs) adopt abnormal positions within the gonad primordium
or form separated primordia. Thus, for each of these cells types,
CDC-42 and the PAR-3 complex function in the same
processes.

The phenotypes observed in this study are in the context of
partial gene knockdown because complete RNAi inhibition of
CDC-42 or members of the PAR-3 complex results in emb-
ryonic lethality. Furthermore, the cells assayed retain some
polarity. For example, VPCs and seam cells have apical junc-
tions and neurons have axons. Our results do not distinguish
whether the observed defects are due to impaired cell
polarisation, or are a direct effect on cell migration or
polarised growth, or both. We also do not yet know the site of
action of these genes. Since RNAI after hatching does not
induce the effects we observed here (data not shown),
maternal protein is sufficient for these processes. In the
future, the use of cell specific constitutively active or domi-
nant negative proteins could address this question. Never-
theless, our results indicate that CDC-42 and the PAR-3
complex function together broadly in a range of different
developmental processes.

Fig. 6. Q cell migrations and axon guidance are disrupted by cdc-42(RNAi).
(A, B) Overlays of Nomarski images of L4 animals with projections of mec-
7::GFP expression (green). (A) Wild-type; AVM neuron is anterior of the
ALM neurons. (B) cdc-42(RNAi) animal with AVM neuron in the mid-body,
posterior to ALM. (C—E) Projections of mec-7::GFP expression in L4 animals
marking neurons and axons. In wild type animals the PVM axon migrates
ventrally and enters the ventral nerve cord and both PVM and ALM axons are
unbranched (C). Some cdc-42(RNAi) (D) and par-3(RNAi) (E) animals show
defects of mechanosensory neurons, including dorso-ventral guidance defects
of the PVM axon (D), branching defects of both PVM and ALML axons
(arrowheads in panel D) and neuron polarity defects with extended anterior
and posterior processes of ALMR (arrowheads in panel E). Only the left side
of the body is shown in panel D and the right side in panel E. Anterior, left;
ventral, down; vulvae are marked by asterisks; scale bar, 20 um. (F) Table of
Q cell migration and axon guidance defects. 'All affected control and par-6
(RNAi) animals had only mild defects, while 7/25 affected cdc-42(RNAi) and
2/5 affected par-3(RNAi) animals had strong defects. Defects include dorso-
ventral and anterior—posterior guidance defects, abnormal branching and
defasiculation of ALM axons (cdc-42, par-3 or par-6(RNAi)), PLM axons (all
treatments) and PVM axons (cdc-42 or par-3(RNAi)). AVM: great grand-
daughter (QR.paa) of the anterior migrating QR neuroblast. PVM: great
granddaughter (QL.paa) of the posterior migrating QL neuroblast.
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CDC-42 and the PAR-3/PAR-6/PKC-3 complex together
regulate multiple aspects of gonad formation

In many cdc-42(RNAi) or par-6(RNAi) animals, PGCs are
missing due to conversion of the germ cell lineage to a muscle
fate at the 25-cell stage, a phenotype originally described for
mes-1 mutants (Strome et al., 1995). The majority of these
animals also show separation of SGPs suggesting that the PGCs
are required for coalescence of the SGPs into a single
primordium. This partial reliance upon PGCs for coalescence
is supported by the fact that the same phenotype is observed in
mes-1(RNAi) animals which have a specific defect in PGC
specification (Strome et al., 1995). A role for PGCs in attracting
SGPs is also suggested by the observation that the abnormal
processes generated by cdc-42(RNAiQ) or par-6(RNAi) SGPs in
the absence of PGCs, are usually directed towards the P-granule
containing descendants of D and P4.

Our suggestion that PGCs are important for gonad
coalescence conflicts with previous studies suggesting that
PGCs are dispensable for somatic gonad development:
ablation of P4, the precursor of the PGCs, caused no apparent
somatic gonad defects (Junkersdorf and Schierenberg, 1992;
Sulston et al., 1983). However, in repeating these ablation
experiments, we found that the P4 corpse is often incorporated
into the gonad primordium, and therefore could be the source
of an SGP cue. We propose that the PGCs provide an
attractive cue for gonad coalescence.

In addition to those individuals lacking PGCs, cdc-42(RNAi)
or par-6(RNAi) also result in animals which retain PGCs but
have abnormal SGP positions within the gonad primordium or
separate primordia. One possible explanation for these
phenotypes is that the SGPs fail to migrate to their normal
positions. However we have not detected significant differences
in SGP positions during embryogenesis following cdc-42
(RNAi) (data not shown). Alternately the primordium might
initially form normally but become disrupted by subsequent
movement of the SGPs. Whether this defect is a result of
abnormal SGP behaviour or abnormal cohesion of the PGCs is
an intriguing question for future studies.

CDC-42 and the PAR-3 complex in neuronal development and
migration

Cdc42 was first identified in Saccharomyces cerevisiae by
a mutant that failed in polarised growth, arresting as large
unbudded cells (Adams et al., 1990; Johnson and Pringle,
1990). Subsequently, it was shown that Cdc42 is also
important in polarised cell shape changes in Drosophila
epithelia, indicating a conserved function in animals (Eaton
et al., 1995). Members of the Par3 complex were identified by
their requirement for the polarity of the C. elegans zygote
(Gotta et al., 2001; Kemphues et al., 1988; Tabuse et al., 1998;
Watts et al., 1996). Although it is now well-established that
Cdc42 and the Par3 complex act together in establishing
animal cell polarity, there has been little previous work
investigating their shared functions in other processes. We
discuss here studies in neuronal and other systems showing

roles for members of the Par3 complex or Cdc42 and their
possible links and effectors.

Although a role for the Par3 complex in polarised epithelial
cell growth has not yet been reported, its requirement in axon
formation supports such a function. Overexpression of Par3 or
Par6 in mammalian hippocampal neurons in culture inhibits
axon formation (Shi et al., 2003). Similarly, overexpression of
Par6 in glial-guided neurons inhibits axon formation, causes
shorter neurites and impairs migration (Solecki et al., 2004). In
contrast, Drosophila interneurons mutant for Par-3 (Baz), Par-6
or aPKC have normal axon development in vivo (Rolls and
Doe, 2004). None of these studies investigated involvement of
Cdc42, but work in other neuron types in culture has shown a
requirement for Cdc42 in neurite outgrowth (Li et al., 2002;
Yuan et al., 2003) Cdc42 has also been shown to be involved in
axon guidance in Xenopus and Drosophila (Kim et al., 2002;
Yuan et al., 2003). In the present study we show that CDC-42
and the PAR-3 complex are both needed for axon guidance and
neuronal migration in C. elegans. We did not uncover a role in
axon formation, but our RNAi conditions may not have been
sufficient to inhibit this process. Our findings, along with data
from mammalian systems discussed above, suggest that
CDC-42 and the PAR-3 complex act together in regulating
neuronal polarity and axon guidance. It may be the case that
these functions are also conserved in Drosophila but that low
levels of residual maternal protein are sufficient to allow
normal development of zygotic mutant neurons.

How might CDC-42 and the PAR-3 complex regulate cell
migrations and polarised growth? In mammalian astrocytes,
activation of Cdc4?2 at the leading edge leads to recruitment of a
Par-3/Par-6/aPKC complex and reorientation of the MTOC in
the direction of migration (Etienne-Manneville and Hall, 2001,
2003a). Orientation of the centrosome also plays a role in axon
outgrowth and neuronal migrations. In glial guided neurons
centrosomal re-orientation precedes axon outgrowth and over-
expression of Par6 or aPKC impairs both this centrosome
movement and the subsequent axon outgrowth and cell
migration (Solecki et al., 2004). In the case of astrocytes,
reorientation of the MTOC involves GSK-3p regulation of APC
(Etienne-Manneville and Hall, 2003a). As the C. elegans APC
homologue APR-1 plays a role in the migration and elongation
of hypodermal cells during embryogenesis (Hoier et al., 2000),
it is a potential effector of CDC-42 and the PAR-3 complex in
regulating cell migration and polarised growth.

Other possible effectors are Rac and Rho GTPases. Rac
GTPases regulate cell migration through inducing actin
polymerisation at the leading edge (Wittmann and Waterman-
Storer, 2001). In mammalian neural cells Cdc42 and Par-3
activate Rac through interaction with Rac GEFs (Chen and
Macara, 2005; Nishimura et al., 2005). In C. elegans the three
Rac homologues, CED-10, MIG-2 and RAC-2 have partially
redundant roles in the migration of a wide-range of cell types
(Lundquist et al., 2001). MIG-2, for example, is required for
axon guidance and Q cell migrations, with mutants displaying
abbreviated migrations of QR and QL (Zipkin et al., 1997).
Recently, Norman et al. (2005) showed that CDC-42 acts with
MIG-2 and CED-10 in the migration of gonadal distal tip cells,
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supporting a possible role for MIG-2 and CED-10 as CDC-42
effectors. In addition, Cram et al. (2006) recently identified cdc-
42 as a gene required for distal tip cell migration in an RNAI
screen. In contrast to Rac, Rho regulates actin behaviour at the
rear of migrating cells and is excluded from the leading edge
(Wittmann and Waterman-Storer, 2001). In migrating fibro-
blasts the Par6/aPKC complex promotes protrusive activity by
recruiting the E3 ubiquitin ligase Smurf-1, which locally
degrades RhoA (Wang et al., 2003). In C. elegans, the Rho
homologue, RHO-1, plays a role in P cell migration (Spencer
et al., 2001). Thus CDC-42 and the PAR-3 complex might
regulate cell migrations in C. elegans via modulation of Rac
and/or Rho activity.

Finally, in addition to regulation of the cytoskeleton, Cdc42
has also been shown to be involved in polarised secretion via
the exocyst complex (Zhang et al., 2001). Members of this
complex are also potential candidates for mediating elongation
of the VPCs and seam cells.

In summary, we have provided evidence that CDC-42 and
the PAR-3 complex act together in a range of cell types for
polarised cell growth, cell migrations and cell positioning. The
challenge for the future will be to link these proteins to their
activators and effectors to understand how they together carry
out these diverse processes.
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