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Abstract
Background: RNA interference coupled with videorecording of C. elegans embryos is a powerful
method for identifying genes involved in cell division processes. Here we present a functional
analysis of the gene B0511.9, previously identified as a candidate cell polarity gene in an RNAi
videorecording screen of chromosome I embryonic lethal genes.

Results: Whereas weak RNAi inhibition of B0511.9 causes embryonic cell polarity defects, strong
inhibition causes embryos to arrest in metaphase of meiosis I. The range of defects induced by
RNAi of B0511.9 is strikingly similar to those displayed by mutants of anaphase-promoting
complex/cyclosome (APC/C) components. Although similarity searches did not reveal any obvious
homologue of B0511.9 in the non-redundant protein database, we found that the N-terminus
shares a conserved sequence pattern with the N-terminus of the small budding yeast APC/C
subunit Cdc26 and its orthologues from a variety of other organisms. Furthermore, we show that
B0511.9 robustly complements the temperature-sensitive growth defect of a yeast cdc26∆ mutant.

Conclusion: These data demonstrate that B0511.9 encodes the C. elegans APC/C subunit CDC-
26.

Background
A major goal in biology is to understand the function of
each gene. For many organisms, complete genome
sequences are now available. Combined with knockdown
techniques such as RNAi or morpholino oligos, genes can
be quickly assayed for in vivo function [1,2]. In C. elegans,
genome-wide knockdown of gene activity through RNAi
has provided important phenotypic information for thou-
sands of genes [3-8]. Although a useful starting point,
much of the phenotypic information lacks detail; for

example, many genes are only annotated as essential for
viability.

Several studies have carried out additional analyses to
identify more precise gene functions. In particular, RNAi
videorecording screens have uncovered very detailed
defects allowing genes to be grouped into more specific
phenotypic classes [4,7-9]. However, within each class
there still exist groups of genes with different functions.
Analysing the phenotypes of individual genes in more
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depth is important for assigning genes to specific func-
tions. Through an interest in embryonic polarity, we
investigated the function of B0511.9, previously identi-
fied as having embryonic polarity defects in a large-scale
RNAi videorecording screen [9]. Through phenotypic
analyses, we show that B0511.9 shares functions with
components of the cell cycle regulator, the anaphase pro-
moting complex/cyclosome (APC/C).

The APC/C is a complex of 12 subunits in animal cells (13
in yeast) that regulates destruction of key cell cycle regula-
tors at the appropriate times by targeting them for degra-
dation by the 26 S proteasome through its E3 ubiquitin
ligase activity (reviewed in [10-12]). In C. elegans, nine of
the 12 APC/C subunits have been identified based on
sequence analysis [13-17]; Cdc26, Apc7, and Apc13 were
not identified. For seven subunits, loss of function using
mutants or RNAi causes an arrest at metaphase of meiosis
I; for two (apc-5 and apc-10), weak embryonic lethality
was seen along with germline maintenance problems con-
sistent with mitotic defects (reviewed in [18]).

Results and Discussion
B0511.9 is required for the metaphase to anaphase 
transition of meiosis I
In large scale RNAi videorecording screens, RNAi of
B0511.9 was shown to cause different phenotypes: loss of
asymmetry in the first cell division or one cell arrest due
to failure to pass through meiosis [8,9]; To understand the
role of B0511.9 in cell division, we examined the RNAi
phenotype in detail.

We first carried out a time course of RNAi feeding of
B0511.9 and examined embryos laid at different times
after RNAi was initiated in the mother (Table 1). RNAi
knockdown increases in strength during the time course.
There was an increase in lethality from 17.9% at 24–32
hours post feeding to 100% at 56 hours post feeding or
later. The terminal arrest phenotypes of the embryos
changed over time. At 24–32 hours post feeding, most
arrested embryos contained many cells whereas embryos
laid 56 hours after initiation of RNAi feeding arrested as a
single cell (Table 1). At intermediate time points, both
types of terminal arrest embryos were seen (Table 1).

To investigate the arrest stage of the embryos after strong
RNAi of B0511.9 we examined the pattern of DNA con-

densation of embryos inside the uterus using a GFP::his-
tone reporter gene. Compared to the wild-type where
progressively older embryos have progressively more cells
(Figure 1A, B), embryos in the uteri of B0511.9(RNAi)
mothers all showed the DNA condensation typical of met-
aphase of meiosis I (Figure 1C, D). Staining these arrested
embryos for tubulin confirmed that embryos arrested
with a meiosis I metaphase-like spindle (inset in Figure
1D). This phenotype is similar to that reported for
mutants or strong RNAi of anaphase promoting complex/
cyclosome (APC/C) subunits [13-15,17]. We confirmed
that the phenotype of strong B0511.9(RNAi) embryos
described above is identical to that seen after RNAi of
APC/C component emb-27/Cdc16 (Figure 1E, F). These
results indicate that like APC/C components, B0511.9 is
required for progression from metaphase to anaphase of
meiosis I.

Weak depletion of B0511.9 causes embryonic polarity 
defects
We next examined the phenotype of embryos laid after
shorter maternal RNAi of B0511.9, which should cause a
weaker depletion. In wild-type embryos, the first cell divi-
sion is asymmetric, occurring at 56% embryo length
(range of 54–57%, n = 20). In contrast, we found that first
division in B0511.9(RNAi) embryos is much more sym-
metric, occurring on average at 52% embryo length (range
of 51–54%, n = 10). This suggests that B0511.9(RNAi)
embryos have a defect in embryonic polarity.

In wild-type embryos, polarity is initiated during the first
cell cycle, leading to the asymmetric localisation of PAR
polarity proteins, with a complex of PAR-3/PAR-6/PKC-3
at the anterior cortex and PAR-1 and PAR-2 at the poste-
rior cortex (reviewed in [19]). These proteins are required
for the posterior displacement of the first mitotic spindle,
which leads to an asymmetric cell division. In par mutant
embryos, the first division is symmetric instead of asym-
metric and the remaining PAR proteins are often mislocal-
ized [19-26].

To determine whether RNAi of B0511.9 affected PAR
polarity, we examined the localization of PAR-2 and PAR-
3 in weakly affected B0511.9(RNAi) embryos. We found
that these PAR proteins were abnormally distributed in
82% (n = 67) of such embryos, compared to 0% abnor-
mal distribution in wild-type embryos (n = 30), indicating

Table 1: Time course of RNAi of B0511.9

Time post RNAi Dead embryos (n) Hatched embryos (n) Phenotype of dead embryos

24–32 hours 17.9% (93) 82.1% (425) Multicellular
32–48 hours 31.1% (324) 68.9% (719) One cell arrest or multicellular
48–56 hours 81.6% (288) 18.4% (65) Predominantly one cell arrest
> 56 hours 100% (93) 0% One cell arrest
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a defect in embryonic polarity. In most of B0511.9(RNAi)
embryos, PAR-3 was expanded to encompass the entire
cortex whereas PAR-2 was found in cytoplasmic puncta
(Figure 2C–F and legend). This pattern is strikingly similar
to that seen in partial loss of function mutants or weak
RNAi of APC/C subunits emb-27/Cdc16, mat-1/Cdc27,
mat-2/Apc1, mat-3/Cdc23, and emb-30/Apc4 [16]. The sim-
ilarity in the range of phenotypes induced by RNAi of
B0511.9 and APC/C components argues that B0511.9
functions with the APC/C.

B0511.9 shows homology to the APC/C subunit Cdc26
There are two alternatively spliced isoforms of B0511.9
inferred from the sequence of ESTs, called B0511.9a and
B0511.9b, which are predicted to encode proteins of
175aa and 187aa, respectively [27]. The final intron pre-
dicted in Wormbase [27] is not removed in the ESTs, mak-
ing the proteins shorter than originally proposed due to
an earlier stop codon. Homology searches using Blastp
[28] with standard settings against the non-redundant
protein database (NCBI) did not uncover any similarity of

Meiotic metaphase arrest induced by strong RNAi of B0511.9Figure 1
Meiotic metaphase arrest induced by strong RNAi of B0511.9. Pairs of pictures show DIC and fluorescence images of 
embryos in the uterus of a mother carrying a GFP::H2B transgene marking nuclei. (A, B) wild-type embryos show progressively 
more nuclei as divisions proceed. (C, D) B0511.9(RNAi) embryos are all arrested at the one cell stage; staining of such embryos 
for beta-tubulin (red) and DNA (blue) shows arrest stage is at meiotic metaphase I (inset). (E, F) emb-27/Cdc16(RNAi) embryos 
arrested in metaphase of meiosis I [15], a phenotype identical to that of B0511.9(RNAi) in (C, D). Arrows in (D) and (F) point 
to sperm chromatin, indicating that the embryos have been fertilized.

A B

C D

E F
Page 3 of 8
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:19 http://www.biomedcentral.com/1471-213X/7/19

Page 4 of 8
(page number not for citation purposes)

Embryonic polarity defects after weak RNAi of B0511.9Figure 2
Embryonic polarity defects after weak RNAi of B0511.9. (A) wild-type 2 cell embryo after asymmetric first division; 
anterior AB cell is larger than the posterior P1 cell. (B) B0511.9(RNAi) embryo showing a symmetric first division. (C) PAR-3 at 
the anterior cortex of a wild-type one-celled embryo at anaphase. (D) PAR-3 on the entire cortex of a B0511.9(RNAi) embryo 
at anaphase. (E) PAR-2 at the posterior cortex of the wild-type one-celled embryo in (C). (F) PAR-2 in cytoplasmic structures 
in the B0511.9(RNAi) embryo shown in (D). The PAR-2 antibody shows weak cross-reaction with microtubules. PAR-2 and 
PAR-3 distributions were scored in wild-type and B0511.9(RNAi) embryos from prophase to the two cell stage. We distin-
guished weak versus strong classes of PAR staining defects in B0511.9(RNAi) embryos: (1) weak: an enlarged domain of cortical 
PAR-3 with a reduced domain of cortical PAR-2. (2) strong: complete cortical PAR-3 with PAR-2 in cytoplasmic puncta. In 
embryos where both meiotic divisions occurred, scored by the presence of two polar bodies, 50% were in the weak class and 
17% in the strong class (n = 18). In embryos with a meiotic division defect, scored by the presence of only one polar body, 23% 
were in the weak class and 63% were in the strong class (n = 49). The PAR distribution defects in B0511.9(RNAi) embryos hav-
ing two polar bodies suggests that its polarity function is separable from its meiotic function.
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B0511.9 to any known protein. However, Blastp searches
against the S. cerevisiae protein database revealed homol-
ogy of the N-terminus of B0511.9 to the N-terminus of
Cdc26.

Budding yeast CDC26 encodes a small protein of 124 aa
that is dispensable for proliferation at 25°C but essential
for progression through mitosis at 37°C [29]. The protein
resides within the APC/C where it stabilizes the associa-
tion of the TPR repeat proteins Cdc16 and Cdc27 with
other subunits of the complex [30,31]. Proteins related to
Cdc26 have been found in the APC/C isolated from fis-
sion yeast and human cells [32,33]. Although the B0511.9
sequence is longer than those of other Cdc26 orthologues,
it shares with all these proteins a conserved pattern of
charged and large, hydrophobic residues at the very N-ter-
minus (Figure 3). In contrast, the C-terminal regions of
Cdc26 orthologues lack detectable sequence conserva-
tion. Indeed, the first 71 amino acids of S. cerevisiae Cdc26
are sufficient for proliferation albeit at a reduced rate [29].

B0511.9 complements a budding yeast cdc26 mutant
To test whether B0511.9 could functionally replace
Cdc26, we expressed it in S. cerevisiae cells lacking the
endogenous CDC26 gene. As shown in Figure 4A, the
B0511.9 plasmid but not the empty vector restored prolif-
eration of cdc26∆ mutant cells at 37°C. Complementation
was remarkably robust: cdc26∆ cells expressing B0511.9
grew with wild-type kinetics and were normal with respect
to cell size, budding index, and cellular DNA content (Fig-

ure 4B). Expression of B0511.9 failed to rescue the tem-
perature-sensitive growth defect of cells lacking another
APC/C subunit, Doc1/Apc10. This result demonstrates
that B0511.9 provides Cdc26 function to the yeast cells
but does not rescue a general defect in APC/C activity.

Conclusion
Our functional and phenotypic assays indicate that
B0511.9 encodes the C. elegans APC/C subunit Cdc26 and
accordingly we have named it cdc-26. Inhibition of cdc-26
activity leads to the same range of defects as seen after
inhibition of other APC/C subunits, namely embryonic
polarity defects after weak knockdown, and meiotic met-
aphase I arrest following strong knockdown. Consistent
with the role of yeast Cdc26 in stabilizing the association
of Cdc16 with other subunits, a large-scale two-hybrid
study in C. elegans showed that CDC-26 binds to APC/C
component EMB-27/Cdc16 [34].

Previous studies had identified C. elegans homologs of 9
of the 12 known human APC/C subunits (reviewed in
[18]). No sequences with significant matches to Cdc26,
Apc7, or Apc13 had been found. This study illustrates the
power of RNA interference screens coupled with detailed
phenotypic analyses in assigning gene function. RNAi
embryo videorecording data for hundreds of genes are
available [4,7-9]. In many cases, the defects observed in
these movies give insight into the biological process
affected. Further study of genes in different phenotypic
classes will provide a deeper understanding into the

Multiple sequence alignment of N-terminal sequences from Cdc26 orthologuesFigure 3
Multiple sequence alignment of N-terminal sequences from Cdc26 orthologues. All sequences start at the initiator 
methionine, and numbers give the total length of the protein. Conserved residues are highlighted in yellow. Ce, Caenorhabditis 
elegans (NP_740913, B0511.9); Cb, Caenorhabditis briggsae (CAE67051); Hs, Homo sapiens (NP_644815); Mm, Mus musculus 
(NP_647452); Xl, Xenopus laevis (BP677104); Dr, Danio rerio (NP_001004005); At, Arabidopsis thaliana (AAN10198); Am, Apis 
mellifera (XP_001122028); An, Aspergillus nidulans (AI210365); Sp, Schizosaccharomyces pombe (O13916, Hcn1); Ag, Ashbya gos-
sypii (NP_984005); Cg, Candida glabrata (CAG60767); Sc, Saccharomyces cerevisiae (NP_116694).

Ce    MSMLRRPLTQLELCEDDIQWLT-DQLNKRVLPAVIVPKCEMMDIDEMEPMDQSEPPRGIT  194

Cb    MSMLRRPLTQLELCEDDIQWLS-EQLAKKETGFEDEVKYEVMDVDEDEPMDQSEPTGGIS  199

Hs    --MLRRKPTRLELKLDDIEEF--ENIRKDLE----------TRKKQKEDVEVVGGSDGEG   85

Mm    --MLRRKPTRLELKLDDIEEF--ESIRKDLE----------ARKKQKEDVEGVGTSDGEG   85

Xl    --MLRRKPTRLELKLDDIEEF--ESIKKDLE----------GRKKQREEVDLS-ATETDA   84

Dr    --MLRRKPTRLELKLDDTEEF--ESVKKELE----------SRKKQRDEVDVVGVATSSE   88

At    --MLRRKPTKIQLKIEDREEL--EQSRKSQP----------STTTTTAPSSSSAASSLHH   65

Am    --MIRRSPTRIDLRLDDLQEY--EAMRKALE----------AKKESERPPTFNPPSWG--   72

An    --MIRRKPTAIAITSDDLTMFEEERLRK-LE----------PRNSGHDPAQNGTRVNFDP   75

Sp    --MLRRNPTAIQITAEDVLAYDEEKLRQTLD----------SESTTEEALQKNEESTRLS   80

Ag    --MLRREPTTIQLTSDDLAELQ-DNLEEFKL----------LQQIKSQHMDLVRSSTRVG  118

Cg    --MIRREATTLTLSQTDINDLVDELEERKLQR---------IINKQRDRVLRTSTKLESG  147

Sc    --MIRRAPTTLQLSHDDVTSLIDDLNEQKLKQQLN------IEKTKYFQGKNGGSLHSNT  124
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The C. elegans B0511.9 gene complements the proliferation defect of yeast cells lacking the CDC26 geneFigure 4
The C. elegans B0511.9 gene complements the proliferation defect of yeast cells lacking the CDC26 gene. (A) S. 
cerevisiae cells containing a deletion of CDC26 were transformed with a plasmid expressing the C. elegans B0511.9 gene from 
the yeast PGK promoter, or with the empty vector, or with a plasmid containing the yeast CDC26 gene. Wild type cells (WT) 
transformed with vector and cells lacking the DOC1/APC10 gene transformed with plasmids containing B0511.9 or the yeast 
DOC1 gene served as controls. Transformants were grown at 25°C in selective medium, normalized for cell density, and ten-
fold serial dilutions were spotted onto plates with rich medium. Shown are plates incubated at 25°C for 36 hours and at 37°C 
for 24 hours. (B) Strains from (A) were grown at 25°C and then shifted to 37°C for 5 hours. Shown are differential interfer-
ence contrast pictures of the cells. Numbers indicate the percentage of budded cells in the indicated cultures. Graphs show 
cellular DNA content measured with a flow cytometer.
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mechanisms of shared cell division processes. For exam-
ple, careful analyses of these data may lead to the identifi-
cation of C. elegans Apc7 and Apc13.

Methods
Strains
The following strains were used and cultured by standard
methods [35]: wild-type Bristol N2, AZ212: unc-119(ed3)
ruIs32 [unc-119(+) pie-1::gfp::H2B] [36].

RNA interference
RNAi was carried out by feeding [37] as in [38] using RNAi
feeding clones from [3,5]. Sequences of the clones are
available in Wormbase [27] as sjj_B0511.9 for B0511.9
and as sjj_F10B5.6 for emb-27. For the time course in
Table 1, wild-type N2 L4 hermaphrodites were placed on
RNAi feeding plates containing the same bacterial strain at
20°C for 24 hours, then moved to new RNAi feeding
plates for the indicated collection times. Embryos laid on
each plate were scored the next day for embryo hatching
and terminal phenotype. Fertilized embryos were easily
distinguished from unfertilized oocytes by their oblong
rather than rounded shape and presence of an eggshell,
visible in the dissecting microscope. For strong RNAi of
B0511.9 in Figure 1, GFP::H2B L4 hermaphrodites were
placed on feeding plates for 30 hours at 25°C and then
scored by DIC and GFP microscopy; for RNAi of emb-27/
Cdc16, RNAi feeding was for 20 hours. For weak RNAi of
B0511.9 in Figure 2 and for videorecording analyses, wild-
type N2 L4s were placed on feeding plates for 40 hours at
20°C, then embryos dissected and processed for antibody
staining or videorecording.

Embryo analyses
Videorecordings were done as in [9]. Antibody staining
was done as in [22]. The PAR-3 antibody was raised in rat
using GST-PAR-3 described in [21] and then affinity puri-
fied against the same protein after preclearing the serum
of anti-GST antibodies. The PAR-2 antibody was raised in
rabbit against N-terminally His-tagged full length PAR-2
and then affinity purified against the His-tagged N-termi-
nus of PAR-2 (amino acids 1–100). Secondary antibodies
were from Jackson Immunoresearch.

Yeast experiments
The cdc26∆::KanMX4 strain and the corresponding wild-
type are in the BY4741 genetic background (MATa his3∆1
leu2∆0 met15∆0 ura3∆0) and were obtained from the
European Saccharomyces cerevisiae Archive for Functional
Analysis (EUROSCARF). The doc1∆::KanMX4 deletion
allele was introduced into the W303 background (MATa
ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1).

To express C. elegans B0511.9a in yeast, a cDNA in the
donor vector pDONR201 was obtained from [39] and

then transferred to the expression destination vector
pVV214 using GATEWAY recombinational cloning [40].
The resulting plasmid pJA189 contains an URA3 marker,
the yeast 2-micron origin, and expresses B0511.9a from
the PGK promoter. Translation starts at the second
methionine of the original B0511.9a sequence where the
homology with other Cdc26 orthologues begins (see Fig-
ure 3). To construct positive controls for the complemen-
tation of yeast mutants, yeast CDC26 and DOC1 were
cloned into the vectors YCplac33 [41] and pRS426 [42],
respectively. Standard protocols were used to transform
yeast and to prepare growth media [43]. To determine the
budding index > 200 cells were counted after brief sonica-
tion. To measure cellular DNA content cells were stained
with propidium iodide and analyzed on a Becton Dickin-
son FACScan flow cytometer.

Bioinformatics
Database searches were performed at the National Center
for Biotechnology Information with Tblastn and Blastp
[28]. Multiple sequence alignments were generated with
ClustalX [44] and edited manually.
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