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Summary

Transposon jumps are a major cause of genome insta-
bility. In the C. elegans strain Bristol N2, transposons
are active in somatic cells, but they are silenced in the
germline [1], presumably to protect the germline from
mutations. Interestingly, the transposon-silencing
mechanism shares factors with the RNAi machinery
[2]. To better understand the mechanism of transpo-
son silencing, we performed a genome-wide RNAI
screen for genes that, when silenced, cause transposi-
tion of Tc1 in the C. elegans germline. We identified
27 such genes, among which are mut-16, a mutator
that was previously found but not identified at the
molecular level, ppw-2, a member of the argonaute
family, and several factors that indicate arole for chro-
matin structure in the regulation of transposition.
Some of the newly identified genes are also required
for cosuppression and therefore represent the shared
components of the two pathways. Since most of the
newly identified genes have clear homologs in other
species, and since transposons are found from proto-
zoa to human, it seems likely that they also protect
other genomes against transposon activity in the
germline.

Results and Discussion

The C. elegans genome contains 32 copies of the Tc1
transposon [3, 4]. Strikingly, Tc1 elements are active in
somatic cells, whereas they do not jump in the germline
[1]. The somatic activity suggests that the lack of activity
in the germline is a regulatory effect rather than a lack
of mechanistic potential. The elements themselves are
indeed fully functional in cis [5, 6]. In addition to natural
mutator loci, EMS-induced mutants (“mutators”) have
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been isolated in which Tc1 transposition is activated in
the germline of the Bristol N2 strain [2, 7]. Interestingly,
half of the mutator mutants are also defective in the
gene-silencing process RNAI [2]. These include alleles
of the four mut genes that have been identified so far:
mut-7, a gene with homology to E. coli RNaseD [2],
mut-8 (Tops et al., submitted), mut-14, a DEAD box
helicase [8], and mut-15 (Ketting et al., personal commu-
nication). This partial overlap between the processes of
RNAi and transposon silencing led to the notion that a
natural function of RNAi is to protect the genome from
transposition in the germline [9].

Identification of 27 Genes Required

for Transposon Silencing

We used the recently developed tool of genome-wide
RNAi screens [10-13] to gain more insight into the mech-
anism of transposon silencing. To monitor transposition,
we used a strain with a visible twitching phenotype
caused by a Tc1 insertion in the muscle gene unc-22.
This strain was fed with bacteria that express dsRNA
homologous to (part of) a C. elegans gene in order to
knockdown that gene by RNAi. We inspected the prog-
eny for wild-type moving worms, i.e., worms in which
the transposon had jumped out of unc-22, restoring its
function. Initially, we screened 14,387 of the currently
predicted 19,427 genes in C. elegans by using the RNAi
feeding library [13]. All positives were retested 5-fold.
Table 1 shows the 27 genes that scored positive at least
three times in the latter experiment.

The genes were identified by the criterion that their
silencing induces reversion of a Tc1 allele of the muscle
gene unc-22. To verify that the reversion is indeed the
result of transposon excision, we performed a transpo-
son insertion display [14] for three of the genes identi-
fied. Figure 1 indeed shows that homozygous revertants
obtained after RNAi knockdown of three genes (mut-
16, F10G8.3, and asg-1) have lost the Tc1 element in
unc-22. In addition, the release of transposon silencing
induces novel insertions. Finally, we tested mut-16 for
its ability to revert a Tc5 allele. In our previous analysis
of mutator mutants, we found that loss of mut-7 function
results in loss of silencing of Tc1, but also of other
transposons such as Tc3, Tc4, and Tc5 [2]. We find that
knocking down mut-16 by RNAi also results in transposi-
tion of Tc5. We therefore conclude that mut-16 is a
general mutator; it silences transposition of DNA
transposons of different types in the germline of C. ele-
gans. We assume, but have not tested, that this applies
to other genes listed in Table 1.

Molecular Identification of mut-16

We previously identified a set of 43 genetic mutants
defective in transposon silencing [2]. Here, we sampled
this collection of mutants by DNA sequence analysis
and found that five mut-16 mutants, as well as an rde-6
(ne322) mutant, which was previously found to be allelic
to mut-16 (F. Simmer and R.H.A.P., unpublished data; H.
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Tabara and C. Mello, personal communication), contain
mutations that cause an early stop in B0379.3 (Figure
2). These mutations affect both transposon silencing
and RNAi. The identification of mut-16 shows that in
this screen, we can identify genes that are involved in
the RNAi mechanism. It might be expected that RNAI
could not inactivate this class of genes, since this re-
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Figure 2. Gene Structure and Genetic Mutants of mut-16

We sampled our collection of 43 genetic mutants defective in
transposon silencing [2] by DNA sequence analysis, and in five mut-
16 mutants, as well as an rde-6 (ne322) mutant (which was previously
found to be allelic to mut-16), we found a mutation in B0379.3, a
gene that we identified in our screen. mut-16 (B0379.3) encodes a
protein that has proline-rich and glutamine/asparagine-rich regions.
The gene structure is based on EST data from Y. Kohara (WormBase,
http://www.wormbase.org, WS104) and additional cDNA sequenc-
ing. Note that two mut-16 mutants have the same mutation (pk700 =
pk701).

Figure 1. Tc1 Excision and Reintegration
after Knocking Down Mutator Genes

NL960 (unc-22 [st136::Tc1]) worms were
grown on E. coli expressing dsRNA homolo-
gous to either B0379.3 (mut-16), F10G8.3, or
K07A12.3 (asg-1). Revertants were analyzed
by a transposon insertion display [14]. The
bands represent Tc1 elements present in the
genome. The unc-22::Tc1 element present in
the starting strain NL960 is indicated; the Tc1
element at this position is lost in all homozy-
gous revertants, but not in a heterozygous
revertant (indicated by an asterisk). The
arrows indicate reintegration of Tc1 elements
at new locations. For B0379.3, new insertions
were visible in other display experiments
(data not shown).

quires that genes essential for RNAi can themselves
be inactivated via RNAi. However, the success of this
approach probably depends on the precise timing and
relative stability of mRNA and protein levels. Indeed,
several previous reports describe the successful knock-
down of genes involved in RNAi by RNAi [15-18]. Assays
to detect RNAI defects for the other 26 identified genes
failed (data not shown), and we are currently searching
for genetic nulls to further address this question.

Four Novel Mutator Genes Are also Involved

in Cosuppression

The transposon silencing and RNAi pathways not only
share components with each other, but they also share
key components with the pathway controlling trans-
gene-induced cosuppression [19-21]. Transgene-induced
cosuppression is the silencing of a transgene and a
homologous (endogenous) gene. We tested the entire
set of genes for a role in transgene-induced cosuppres-
sion in the germline. We created a strain in which germ-
line expression of GFP is cosuppressed by a second
transgene that contains a truncated GFP gene (Figure
3B). We then targeted the genes found in the screen by
RNA.. Knocking down ppw-2 (Figure 3C), mut-16 (Figure
3D), C28A5.1, and C28A5.2 (data not shown) by RNAI
results in reexpression of GFP in the nuclei of the germ-
line, i.e., knocking down these genes results in a cosup-
pression-deficient phenotype, indicated with “cde” in
Table 1. It should be noted that, as always in RNAi
experiments, negative results are not necessarily mean-
ingful, and one may not conclude that the other genes
are not required for cosuppression.

Transposon Silencing, Cosuppression, and RNAi
We here identified 27 genes involved in transposon si-
lencing, and this is certainly an underestimation of the
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Figure 3. Reexpression of GFP after Targeting ppw-2 and mut-16 by RNAi

(A) Gonad arm of an AZ212 nematode in which GFP is expressed from a single-copy transgene in the nuclei of oocytes.
(B) Gonad arm of an NL3847 nematode in which gfp is cosuppressed by an array containing multiple copies of a truncated form of the gfp

gene.

(C) Gonad arm of an NL3847 nematode after targeting ppw-2; cosuppression is impaired, and GFP is reexpressed.
(D) Gonad arm of an NL3847 animal after RNAi against mut-16; cosuppression is impaired, and GFP is reexpressed.

complete set, since some genes may have such weak
effects that they are not detected in this assay and other
genes might not be silenced by RNAi to levels that result
in the known null phenotype (we were not able to obtain
a mutator phenotype by RNAi for mut-7, mut-8, mut-14,
and mut-15 [data not shown]). Moreover, 18 of the 27
genes are required for fertility or viability: their silencing
clearly results in partial embryonic lethality and growth
defects (Nonv and Gro in Table 1). The revertants that
were obtained after targeting these genes by RNAI are
obviously escapers from this lethal phenotype. Appar-
ently, targeting these genes by RNAI results in expres-
sion levels that do not induce lethality but do establish
transposition. This suggests that we might have missed
essential genes that have a more severe nonviable phe-
notype upon RNAI.

Based on sequence comparisons, we categorized the
27 predicted proteins involved in transposon silencing
in three groups. Table 1A shows a diverse group of
genes with a mitochondrial function. It is conceivable
that transposon silencing is one of the first things to
stop when there is shortage of energy, and therefore
(some of) these genes may not be genuine “mutators”
involved in the mechanism of silencing. The identifica-
tion of these genes does show that the silencing of
transposons requires a healthy energy metabolism.

Table 1B shows a group of genes that are involved
in protein translation, including ribosomal proteins, ribo-
some biogenesis factors present in the nucleolus, and
translation factors. It has been shown previously that
ribosomal proteins cofractionate with small interfering
RNAs (siRNAs) in Drosophila [22] and micro RNAs
(miRNAs) in C. elegans (Ketting et al., personal commu-
nication). siRNAs are derived from the dsRNA that trig-
gers RNAI and are thought to confer sequence specific-
ity to the RNA destruction complex RISC (RNAi-induced
silencing complex) in Drosophila [23], Neurospora [24],
and human [25]. Their suggested association with ribo-

somal proteins might be important for stabilization and/
or guidance to the mRNA. A role for siRNAs in the silenc-
ing of Tc1 in the germline of C. elegans is supported by
the detection of siRNAs derived from Tc1 sequences
([26] and T. Sijen, in preparation). These siRNAs could
direct destruction of the transposase mRNA, thereby
preventing transposition. If so, the ribosomal proteins,
ribosome biogenesis factors, and translation factors
that we find might play a role in stabilizing and guiding
the siRNAs involved in transposon silencing and RNAi or
specifically in transposon silencing. We cannot exclude,
however, that the function of this class of proteins in
transposon silencing reflects an indirect role.

Table 1C shows the remaining genes. This group in-
cludes mut-16, a mutator that was previously found in
genetic screens, but not identified molecularly. MUT-16
is involved in transposon silencing, RNAi, and cosup-
pression. The predicted protein has proline- and gluta-
mine/asparagines-rich regions and has no apparent
orthologs in other systems, except C. briggsae. A trans-
gene containing mut-16 upstream sequences and the
mut-16 open reading frame, fused to gfp coding se-
quences, shows broad expression, both in the cyto-
plasm and in nuclei (data not shown). Interestingly, we
also identified ppw-2 as a mutator. PPW-2 is a protein
containing a piwi and a PAZ domain and is a homolog
of the C. elegans proteins RDE-1 [21], ALG-1 and -2 [17],
PPW-1 [27], and of several proteins in other systems,
together forming the argonaute family. The argonaute
family has been implicated in several gene-silencing
processes (recently reviewed by Carmell et al. [28]).
Members have been identified in complex with DICER
(the enzyme that generates siRNAs from dsRNA) and
also as components of RISC, which also contains
siRNAs [23-25]. PPW-2 is the first member of the
argonaute family shown to play a role in transposon
silencing and cosuppressionin C. elegans. We also iden-
tified three nuclear proteins as mutators that could imply
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arole for chromatin structure in the silencing of transpo-
sons. The nucleosome assembly factor D2096.8 could
be directly involved in structuring chromatin. The role
of the nuclear pore complex proteins F10G8.3 and
Y54E5A.4, however, could be more indirect since it has
been shown recently that in yeast, nuclear complexes
are linked to the boundaries of heterochromatin do-
mains [29], linking the nuclear envelope with chromatin.
All three could imply a role for chromatin structure in
the silencing of transposons. In plants [30, 31], Chlamy-
domonas [32], and yeast [33], transcriptional gene
silencing plays an important role in silencing (retro-)
transposons. Moreover, in C. elegans, transgene silenc-
ing requires polycomb group proteins [34] and an iso-
form of histone H1 [35]. The identification of D2096.8 and
the nuclear pore complex proteins as mutators suggests
that chromatin structure might also play a role in
transposon silencing and possibly RNAi in C. elegans.

Supplemental Data

Supplemental Data including the Experimental Procedures are avail-
able at http://www.current-biology.com/cgi/content/full/13/15/
1311/DCH1/.
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