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The anterior–posterior axis in Caenorhabditis elegans is
determined by the sperm and leads to the asymmetric localisation
of PAR (partitioning-defective) proteins, which are critical for
polarity. New findings demonstrate that sperm asters play a
critical role and suggest models for how PAR asymmetry is
established. In addition, studies of blastomere fate determination
and heterotrimeric G proteins have started to uncover how initial
polarity may be translated into the asymmetric distribution of
maternal proteins and the control of spindle position.
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Abbreviations
AB anterior blastomere at the two-cell stage
a–p anterior–posterior
MF microfilament
MT microtubule
P1 posterior blastomere at the two-cell stage
PAR partitioning-defective protein
PKC protein kinase C
MAPK mitogen-activated protein kinase

Introduction
Caenorhabditis elegans embryogenesis begins when a mature
oocyte, arrested in prophase of meiosis I, is fertilised by
sperm in the spermatheca. Just before fertilisation, the
oocyte pronucleus moves away from the side contacting
the spermatheca and the nuclear envelope breaks down;
sperm normally enters at the opposite end, which will
become posterior. After fertilisation, meiosis is completed
with the extrusion of two polar bodies and a protective
chitin eggshell is made (Figure 1a). The eggshell is rigid
and constrains the developing embryo to an ovoid shape [1]. 

After completion of meiosis, the centrosomes, brought in
by the sperm, organise large microtubule (MT) asters
(Figure 1a) and the oocyte pronucleus migrates to meet
the sperm pronucleus at the posterior. During this time, a
prominent pseudocleavage furrow is formed, which later
regresses and cytoplasmic flows occur: internal cytoplasm
flows towards the posterior whereas cortical cytoplasm
flows towards the anterior (Figure 1b). MTs are required
for oocyte pronuclear migration whereas microfilaments
(MFs) are required for the flows and for overall embryonic
polarity [2–5]. 

The two pronuclei meet in the posterior and then migrate
to the centre of the embryo. During this migration the

pronuclear–centrosomal complex rotates 90° to orient the
spindle along the anterior–posterior (a–p) axis (Figures 1c
and d). The initially central mitotic spindle becomes
asymmetrically placed during anaphase, when the anterior
aster remains fairly stationary but the posterior aster under-
goes a rocking movement and moves towards the posterior
(Figure 1e). At telophase, the asymmetrically placed
spindle also has asymmetric morphology, with a round
anterior aster and a flattened posterior aster (Figure 1f;
[6]). The first division gives rise to two daughter cells of
different size: a larger anterior cell, AB, and a smaller
posterior cell, P1 (Figure 1g). AB and P1 also have different
spindle orientations (Figures 1h–j), different cell-cycle
lengths and different cell fates. In addition, a number of
components important for the fates of AB and P1 are
differentially partitioned at the first division. For example,
P granules, which are thought to play a role in determining
the germline fate, are segregated to germline precursors
(P1, P2, P3 and P4) [1,7].

During the first cell-cycle, a group of proteins that are critical
for overall polarity become localised asymmetrically.
Partitioning-defective-1, a serine–threonine kinase, and
PAR-2, a RING finger protein, localise at the posterior cortex
[8–10], whereas PAR-3, PAR-6 and PKC-3 (an atypical pro-
tein kinase C) localise in a reciprocal pattern at the anterior
cortex [11–13]. PAR-3 and PAR-6 contain PSD-95/Discs
large/ZO-1 (PDZ) domains, important for protein–protein
interactions [11–13]. Mutations in PAR genes and PKC-3
disrupt many early asymmetries, such as asymmetric spindle
position and morphology, P granule localisation and the
different fates of the AB and P1 cells [14]. 

In this review, we discuss new data that shed light on the
initial events of primary axis determination, how the initial
asymmetry is translated into PAR asymmetry and how PAR
polarity is transduced into downstream events of asym-
metric protein localisation and regulated spindle
orientation.

Initial establishment of anterior–posterior
polarity
C. elegans oocytes do not appear to have predetermined
polarity. Goldstein and Hird [15] showed that the sperm
defines the posterior end and, therefore, the a–p axis,
which is the long axis of the egg. The sperm polarises the
cytoskeleton and organises the cytoplasmic flows, which
are directed towards its position [2]. Sperm that lack DNA
are capable of fertilisation and establishment of polarity,
suggesting that a component of the centrosome or MT
asters might be active in polarity generation [16]. Although
MT play a major role in polarity establishment in other

Axis determination in C. elegans: initiating and
transducing polarity
Monica Gotta and Julie Ahringer*



systems, previous studies using MT-depolymerising drugs
such as nocodazole had suggested that MTs were not
involved in these early processes in C. elegans; however, a
caveat to these studies is that a small number of MTs are
still present after treatment with depolymerising drugs [6].
Now, recent work from two different groups indicate that a
MT-organising centre is necessary and sufficient for at least
some aspects of a–p polarity [17••,18••]. 

A paper from O’Connell et al. [17••] describes the lack of
polarity in the spd-2 mutant, which has very delayed and
attenuated sperm aster formation. In spd-2 mutants,
cytoplasmic flows are absent and neither PAR proteins nor
P granules are localised. These results suggest that sperm
asters may be the sperm component required for polarity
establishment, and that sperm asters are necessary for
cytoplasmic flows; however, lack of polarity could be
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Figure 1

Early events in C. elegans embryogenesis.
(a) Newly fertilised embryo. Anterior is left and
posterior is right. Meiosis has completed with
the extrusion of two polar bodies at the
anterior (grey circles indicated by the arrow).
The arrowhead points to the rigid eggshell.
The oocyte and sperm pronucleus have
reformed (empty circles) and sperm
centrosomes (red circle) organise MT asters
(black lines). P granules (blue dots) are
randomly distributed at this stage. (b) The
oocyte pronucleus migrates toward the sperm
pronucleus. During this migration, internal
cytoplasm flows towards the posterior
whereas cortical cytoplasm flows towards the
anterior (red arrows) and a prominent
pseudocleavage furrow forms (indicated by
the black arrow). P granules start migrating
toward the posterior. (c) The two pronuclei
meet at the posterior and migrate toward the
centre. During this migration the
pronuclear–centrosome complex rotated 90°
occurs to orient the spindle along the a–p
axis. (d) The pronucleus–centrosomal
complex is central and the centrosomes are
oriented along the a–p axis. P granules are
now localised to the posterior. (e) During
anaphase (dark blue oval represents DNA) the
spindle is displaced towards the posterior.
(f) At telophase (dark blue circle represent
telophase DNA) the spindle has asymmetric
morphology, with a round anterior aster and a
flat posterior aster. (g) The first division gives
rise to two daughter cells of different size: a
larger anterior cell, AB, and a smaller posterior
cell, P1. P granules are exclusively segregated
to the P1 cell. (h) The centrosomes in AB and
P1 duplicate and start migrating around the
nucleus until they are opposed. (i) The
position of the centrosomes at the end of
migration will determine the orientation of the
mitotic spindle in AB, which is orthogonal to
the first division. This division determines the
dorsoventral axis. In P1 the nuclear–centrosomal
complex rotates 90° (illustrated by the arrows)
to orient the spindle along the a–p axis. This
probably occurs through capture of astral MTs
by a cortical site [6]. (j) AB divides before P1.
The nuclear–centrosomal complex in P1 has
rotated so that the spindle will form along the
a–p axis.
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because of the defect in aster formation or because of a
distinct function of spd-2 in establishing a–p polarity [17••]. 

In an elegant series of experiments, Wallenfang and
Seydoux [18••] showed that a MT-organising centre is
sufficient to drive at least some aspects of a–p polarity. The
authors took advantage of mutants arrested in meiosis I
(mat mutants) [19]: in these mutants, sperm asters are not
formed and a persistent meiotic spindle is present at the
presumptive anterior end (opposite to sperm entry). In
contrast, in wild-type embryos, the sperm asters constitute
a MT-organising centre at the opposite (posterior) end. In
the mat mutants, a–p polarity is established; however, it is
reversed compared to wild type. For example, PAR-2, nor-
mally found at the posterior (where the sperm pronucleus
is located), is localised at the cortex where the meiotic
spindle is found and PAR-3 is at the opposite cortex.
Disruption of the meiotic spindle in mat mutants leads to
loss of a–p polarity. These two studies demonstrate for the
first time the importance of MTs in a–p polarisation of the
C. elegans embryo [17••,18••]. MTs are also involved in
a–p polarity in Drosophila [14]. This, together with the
finding that a homologue of C. elegans PAR-1 is required
for a–p polarity in the Drosophila oocyte [20,21], suggests
that some aspects of primary axis generation may be
evolutionarily conserved. 

Although a reversed PAR distribution is established in mat
mutant embryos, the meiotic apparatus is not sufficient to
drive cytoplasmic flows or to localise P granules. In addition,
the established polarity is only transient. This indicates that
although a MT-organising centre is sufficient to drive some
aspects of polarity, it is not sufficient to maintain it. Further,
absence of cytoplasmic flows indicates that MTs are not
sufficient to induce actin-dependent events. 

The next challenge is to understand how MTs drive polar-
isation of the embryo. For example, do the MTs themselves
induce polarity or is a MT-associated protein the active
species? An interesting observation is that the domain
occupied by PAR-2 seems to be defined by the MTs [18••].
Perhaps PAR-2 is transported along MTs or the interaction
of MTs with the cortex somehow modifies the cortex in a
way that allows PAR-2 localisation. Consistent with this
idea, inhibition of the myosin light chain gene, mlc-4, causes
loss of cytoplasmic flow and loss of many aspects of polarity,
but a small patch of PAR-2 is often found adjacent to the
sperm asters (Shelton et al. [22] and Shelton, personal
communication). As PAR localisation is uncoupled from
cytoplasmic flow in mat and mlc-4 mutants, it suggests that
these two events driven by sperm entry are separable.
These results suggest that cytoplasmic flow is not necessary
for initial PAR localisation and may be required to maintain
polarity rather than to establish it. 

Downstream of sperm entry
A MT-organising centre might be the initial polarity cue,
but it is not sufficient for all aspects of polarity — what

other processes are involved? Two groups found that the con-
served small G protein, CDC-42, has an important role
[23•,24•]. Embryos where CDC-42 was inhibited by RNA
interference closely resemble those lacking PAR-3, PAR-6
or PKC-3; three proteins that form a complex in mam-
malian and C. elegans cells ([13,25–27], and Hung and
Kemphues, personal communication). In CDC-42(RNAi)
embryos, PAR proteins are initially asymmetrically
localised as in wild type, but become uniformly distributed
during the first mitosis so that they are present around both
AB and P1 at the two-cell stage [23•,24•]. This suggests
that CDC-42 is necessary to maintain but not to initiate
polarity. Localisation of PAR-3–PAR-6–PKC-3 in wild-type
AB cells is thought to prevent nucleocentrosomal rotation
[11,28]; however, rotation occurs in CDC-42(RNAi)
embryos, suggesting that CDC-42 might activate the PAR-
3–PAR-6–PKC-3 complex [23•,24•]. Interestingly, both
mammalian and C. elegans CDC-42 bind PAR-6 [23,25–27],
and results from the mammalian system are consistent with
the possibility that CDC-42 activates the complex by pro-
moting the kinase activity of PKC-3. CDC-42 and PAR-6
have been implicated in controlling epithelial polarity in
mammalian and Drosophila cells [29–31], suggesting that
the interaction between CDC-42 and a PAR-3–PAR-
6–PKC-3 complex and its function in generating polarity
have been conserved as a functional unit. 

A study of another class of genes suggests that intracellular
trafficking may play an important role in early polarity in
C. elegans. For example, pod-1 and pod-2 (polarity and
osmotic defective) mutants have abnormal PAR protein
distributions and show osmosensitivity and eggshell
defects [32•,33•]. POD-1 is linked in some way to intracel-
lular trafficking, as pod-1 mutants accumulate abnormal
endocytic vesicles. POD-1 is a coronin-like protein that
was isolated biochemically as an actin-binding protein and
is asymmetrically localised to the anterior in a cell-cycle-
dependent manner [33•,34]. This suggests that it may play
a role in cell polarity by targeting transport of proteins to
the anterior. Further support for the idea that protein traf-
ficking is important for polarity comes from the analysis of
ooc-3 and ooc-5 mutants, in which polarity is lost at the two-
cell stage [35,36•]. OOC-3 is localised to the endoplasmic
reticulum, suggesting that proteins involved in polarity
might be modified or targeted though the endoplasmic
reticulum [36•]. Mutations in another gene, ooc-5, share
many similarities with ooc-3 mutants, implying that it may
also be involved in the same process [35]; however, the
molecular nature of ooc-5 is not yet known. Finally, there
may be a link between genes involved in trafficking and
CDC-42, as CDC-42(RNAi) embryos also show osmosen-
sitivity and eggshell defects [23•,24•]. 

Transducing anterior–posterior polarity to the
asymmetric localisation of maternal proteins
How does PAR-induced one-cell polarity lead to the prop-
er asymmetric localisation of proteins that determine cell
fates? Two recent papers have revealed the nature of this
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linkage. Schubert et al. [37••] found that two closely related
CCCH finger proteins, MEX-5 and MEX-6, appear to act
downstream of the PAR proteins in establishing protein
asymmetries, but do not affect spindle asymmetry in one-
cell embryos. MEX-5 is localised towards the anterior in a
PAR-dependent manner. Anterior localisation of MEX-5 is
complementary to that of a group of posterior-localised
germline proteins, and ectopic expression of MEX-5 is
sufficient to inhibit their expression. The results suggest
that MEX-5 and MEX-6 transduce polarity information
from the PAR proteins resulting in the inhibition of
germline proteins in the anterior. In an exciting addition to
these findings, Page et al. [38•] have found normal protein
asymmetries appear to depend on a balance between
MEX-5–MEX-6 function and the level of Ras–MAP
kinase activity. For example, reduction of function
mutants in the Ras pathway partially suppresses mex-5
mutants. In order to understand how the Ras pathway
influences protein asymmetries, an important future goal
will be to find MAPK targets.

Although mex-5 and mex-6 mutants have normal P granule
distribution and spindle orientation at the one-cell stage,
mex-5 mex-6 double mutants are defective in these processes
at later stages [37••], suggesting that these genes might
have a more general role in early polarity than just affecting
maternal protein distribution. Alternatively, the abnormal
distribution of particular proteins might cause the later P
granule distribution and spindle orientation defects.

Interestingly, a number of other proteins asymmetrically
localised in the C. elegans embryo contain two CCCH
domains, including the PIE-1, POS-1 and MEX-1 [39–41].
The CCCH domains play a role in the posterior localisa-
tion of these three proteins. The first CCCH domain
directs degradation in somatic blastomeres and the second
targets the proteins to P granules [42•]. Although the local-
isation of MEX-5 is complementary to these proteins, it
contains CCCH domains; therefore, its anterior localisation
might be achieved through protein degradation. If so, then
a mechanism must exist for distinguishing proteins that
should be degraded in the anterior from those degraded in
the posterior. In the case of PIE-1, PAR-1 is required for
the correct localisation of somatic degradation activity, sug-
gesting a way that PAR polarity could be transduced into
the localisation of maternal proteins [42•].

Polarity and spindle orientation: the G-protein
connection
PAR mutants have defects in polarity that lead to defects
in the position and polarity of mitotic spindles. Insight into
regulation of spindle position by PAR proteins has come
from beautiful studies from Grill et al. [43••]. Through a
series of spindle-cutting experiments, they showed that
the pulling force at the flat posterior aster is greater than
that at the round anterior aster, which could explain the
posterior displacement of the spindle. The force difference
depends on PAR-2 and PAR-3. In par-2 mutants, both

asters are round and the pulling force at each pole is low;
in par-3 mutants both asters are flat and the pulling force
at each pole is high. 

How is polarity information transduced to spindle
behaviour? It has recently become clear that heterotrimeric
G proteins are one important key. It was previously shown
that GPB-1, the Gβ-subunit of a heterotrimeric G protein,
is required for orientation of early cell division axes [44].
Recent work has shown that two Gα-subunits, GOA-1 and
GPA-16, redundantly function with GPB-1 in the early
embryo and that Gα and Gβγ control distinct MT-
dependent processes [45•]. Gβγ is necessary for the correct
centrosome migration path around the nucleus and, hence,
in orienting the mitotic spindle. Interestingly, mammalian
Gβγdimers have been shown to promote MTs polymerisa-
tion in vitro [46] suggesting the possibility that C. elegans
Gβγmay control centrosome migration by directly regulating
MTs dynamics. Gα is required for the asymmetric place-
ment and morphology of the first mitotic spindle. Gα only
affects spindle asymmetry and not overall embryonic polar-
ity because the PAR proteins and P granules are correctly
localised in Gα(–) embryos [45•]. This raises the possibility
that Gα specifically translates polarity information from
the PAR proteins into mitotic spindle behaviour, and suggests
that it may be involved in regulating spindle forces in a yet
unknown fashion. 

Three other genes that may be involved in regulating cen-
trosome position in concert with Gα and Gβγ have been
identified: spn-1, let-99 and ric-8. Both spn-1 and let-99
mutants have spindle orientation defects similar to those
seen in embryos lacking Gβ (Rose and Kemphues [47];
Bergmann, Rose and Wood, personal communication).
The nature of the let-99 link is not yet know, but Gβ local-
isation is abnormal in spn-1 mutants, so SPN-1 could
directly affect G-protein activity (Bergmann, Rose and
Wood, personal communication). The ric-8 mutant
embryos have defects in spindle morphology and position
similar to those of Gα(–) embryos [48•]. These pheno-
types are greatly enhanced by a 50% reduction in maternal
goa-1 gene dosage, suggesting that ric-8 and goa-1 function
in the same pathway [48•]. 

Although PAR proteins and heterotrimeric G proteins play
a role in spindle position, it is not yet known how they are
linked. AGS-3, a C. elegans homologue of mammalian Ags3
(a receptor independent activator of G protein signalling;
[49]) may be part of the answer.  Inhibition of two ags-3
homologues results in a phenotype identical to that of
Gα(–) embryos suggesting that it might be a regulator
(M Gotta, J Ahringer, unpublished data; [50•]). In an excit-
ing parallel, the Drosophila homologue of Ags3, PINS, is
essential for polarity and spindle orientation in the neu-
roblast and is found in a complex with Inscuteable, Bazooka
(the Drosophila homologue of PAR-3) and a Gα [51,52].
Thus, spindle regulation by heterotrimeric G proteins may
be a conserved process.
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Conclusions
We can now begin to see an outline of how the a–p axis is
determined in C. elegans and how this information is trans-
duced into downstream events such as spindle position and
asymmetric protein localisation (Figure 2); however, many
pieces of the puzzle are still missing. For example, what are
the targets of the PAR proteins? Although MEX-5–MEX-6
and heterotrimeric G proteins act downstream of the PARs,
a direct link remains to be found. Once Gα is activated,
how does it control spindle position? For example, does it
regulate interaction between the astral MTs and the cortex,
or MT stability? Again, targets need to be identified, and
genes implicated in the process, such as ric-8 and ags-3,
need to be placed into the pathway. 

It is also still unclear how MFs are regulated by sperm
entry. NMY-2, a non-muscle myosin that binds to PAR-1 is
required for polarity [53], as is the myosin light chain
MLC-4 [22]. These proteins, POD-1 and some PAR proteins
are also required for cytoplasmic flow [22,33•,53,54]. In
addition, CDC-42(RNAi) embryos and some PAR mutants
have an altered MF distribution in very early one-cell
embryos [23•,54]. Identification of new cytoskeletal regu-
lators through genetic and RNAi screens should help to
establish the connection between MFs and polarity
([50•,56•–58•]; P Zipperlen et al., unpublished data. 

Although we have highlighted the areas where there are
still large gaps, the field is moving very rapidly. Part of the

rapid pace and excitement is coming from the realisation
that work in different systems (e.g. the C. elegans zygote,
Drosophila oocytes and neuroblasts, mammalian epithelial
cells and Xenopus oocytes [14,20,29,59,60]) is showing that
mechanisms and molecules involved in cell polarisation
and spindle orientation are similar. Going back and forth
between these should be very fruitful for generating
answers to many of the open questions.
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